Monthly Archives: June 2013

Dynamic global landscape – shifting trends in polymers, composites and energy sectors

Hello again,

The world as a whole fared better than the average billionaire in 2012. According to the Boston Consulting Group‘s Annual Report released last week, global private financial wealth grew at an impressive clip of 7.8% in 2012, besting the 7.3% and 3.6% expansion in 2010 and 2011 respectively [Forbes]. The principal driver of the rise in wealth was the strong rebound in equity markets.

IN RETROSPECT & LOOKING AHEAD

1035681_money

2012 was also another year of strong GDP growth in the developing world where the collective economy expanded 10.1% compared to North America, Western Europe & Japan’s collective GDP that grew by just 2.3%. Continued double digit GDP growth, rising savings rate and soaring equity markets fueled a 12.9% increase in private financial wealth in the developing world compared to 5.9% in the mature economies. If this trend continues, the Asia-Pacific region will be home to a projected $48.1 trillion in wealth in 2017, making it the wealthiest region in the world and displacing the current leader North America, in the process.

Will 2013 play out differently with mature economies bucking the trend ?

Composite gas cylinders are progressively gaining momentum and can be used for household, bulk transportation and storage applications. Its container range includes low pressure LPG (propane/butane) cylinders and pressure vessels for CNG (methane). Russia’s first plant [Rugasco] to produce composite gas cylinders was formally commissioned late May with an annual production capacity of 200,000 low pressure gas containers [Plastics & Rubber Weekly]. An automated continuous production line uses continuous glass fiber strands by filament winding process using programmable robotics. This is followed by process of baking and epoxy resin coating and the addition of an outer protective cover. The composite cylinders are claimed to be 70% lighter than steel and enjoy the advantages of transparency and visibility of gas in the cylinder.

FAST AND FURIOUS

140789_lamborghini_murcilago

The race for producers to develop high-speed systems to produce CFRP parts for automotive applications is fast and furious. Toray‘s new system produces parts in 10-minute cycles without sacrificing mechanical properties, compared to 160 minutes for competitive systems. The key is a new resin curing system coupled with a slit prepreg approach and RTM innovation with resin impregnation and curing taking 3 and 5 minutes respectively [Plastics Today]. Mold setting and demold require 1 minute each. The reinforcement is produced by slitting continuous carbon fiber (CF) of a fast cure unidirectional prepreg at an angle from the fiber’s axis at a specific interval to increase drapeability, while maintaining their original positions. The slit prepreg is called unidirectionally arrayed chopped strands which circumvents the problem of bending stiff prepregs to fit in a mold. Molded parts maintain fiber distribution and show excellent surface finish at a 52% CF loading.

This new system was developed at Toray’s Japanese, European and American R&D Centers. Obviously, such successes do not brook regional barriers.

Machining of CFRP products cannot be avoided to avail a near-net shape. Studies in the development of prediction model on cutting force, cutting power and specific cutting force have met with success in assessing the number of machining parameters to be controlled and time taken for machining to determine cutting time. The developed models can be effectively used to predict cutting forces in machining of CFRP products [Sciencia].

PC IN & SMC ON THE WAY OUT ?

45335_bugatti

In automotive applications, polyester-based SMC continues to face stiff competition from thermoplastics. New Polycarbonate (PC) grades with extremely low linear co-efficient of expansion are being adopted for body panels in lieu of SMC. Teijin‘s new grade of PC has been adopted in the Lexus HS for the license garnish where the painted part required excellent dimensional stability because rear lamps fit directly as part of the rear hatch [Plastics Today]. Teijin has also developed a high pencil grade of PC that satisfies head impact requirements for auto applications, undergoing ductile fracture rather than brittle fracture. Full vehicle PC glazing is already being touted a distinct possibility in five years that would enable a 30-40% weight saving.

Technological advances in thermoplastics from grassroots is revolutionizing applications in the automotive sector. Will thermosets match the pace or continue playing catch up ?

Special lightweight nonwovens are being made from carbon fiber (CF) by auto major BMW as one step in the chain that eventually sees them converted into CFRP components. In contrast to woven fabrics, nonwoven bonding methods do not kink the fibers and detract from their special properties. The alignment of fibers in the fabric is crucial to achieving optimal quality in a CFRP component [ Innovation in Textiles]. The high tear resistance along the length of the fibers allows CFRP components to be imparted high strength by following their direction of loading. By overlaying the fiber alignment, components can also be strengthened against load in different directions.

When automakers also start donning the “materials & its forms’ thinking hat, the end result is bound to have success written all over.

SHALE GAS SPIN-OFF

1266636_laboratory_glassware (2)

The benefits of the shale gas boom in North America have been multifold. Apart from affecting the PE/PP market dynamics in a significant manner, it has now filtered down to even Polyamide 66 (nylon). Low-cost propylene derived from shale gas is now being used to to manufacture adiponitrile precursor and then Polyamide in an integrated manner [Plastics Today]. This means that it is cheaper to ship the resin from North America to China than it is to ship the intermediates. A new compounding facility in Florida churns out glass fiber reinforced grades of PA66 with close viscosity tolerance that generate lower levels of mold deposits, thereby enabling processors to run longer before tool cleaning. Target applications include connectors, under-the-hood auto and low voltage switchgear.

A company subsidiary of France-based Arkema has introduced new acrylic sheets that are pre-shrunk and designed for use in several components such as military canopies, aircraft windshields, side windows and wing tip lights [British Plastics]. Claimed to have excellent weathering qualities, the acrylic sheet is available in thicknesses varying from 0.125 to 1 inch, can be bi-axially stretched and has superior properties to glass, whilst meeting military specifications.

OFFSHORE WIND – FUTURE POWER

914408_wind_turbines_2

Wind power surged to a new record in 2012 with nearly 45GW of new installations, a 10% increase from 2011 according to Global Wind Energy Council‘s latest annual market update. The Council also projects a 11% decline this year to just shy of 40GW with a sharp rebound in 2014 to above 2012 levels and 61GW by 2017 [Renewable Energy World]. Another report released late May by the Energy Information Administration [EIA], states that extended Production Tax Credit (PTC) could push wind power production up by 34% in the U.S. in the next three years [The Motley Fool] since “generate power by 2013″ deadlines have shifted to ” begin construction by 2014 ” mandates, thus clearing the air of confusion following the PTC extension announcement in January. Per statement from the Department of Energy [DOE], out of a potential 4,150GW of offshore wind energy, the initiative aims to achieve 54GW by 2030, translating to roughly 10,000 offshore wind turbines averaging at least 5MW each and close to 4% of the nation’s electricity capacity [Renewable Energy World].

At an estimated 800-1,000kgs of carbon fiber per MW, producers can do the maths on the requirement of CF for this application alone in the coming years.

Volkswagen is producing large parts for its XL1 Super Efficient vehicle in CFRP that include the monocoque with slightly offset seats for driver and passenger, exterior body parts as well as functional elements such as the anti-roll bars. The parts, made by the RTM process, are produced in multi-shell, heated and vacuum-sealed tools. At just 1.2mm thickness, the stiffness and strength of the exterior skin matches metal while boasting of a density that is 20% that of a comparable steel part [Plastics Today]. The use of sandwich structures in the monocoque  coupled with aluminum structures in the front and rear sections, renders the vehicle safe. A special fleece layer of resin film is added to the parts as a cover coat for the Class A finish.

 FOAM INNOVATION

667981_sliding_doors

An Italian foam producer Acell has developed an uniquely effective method to mold doors and panels for the building/construction industry using proprietary foam combined with SMC. Arcells’ foam is a combination of proprietary ingredients that form a strong structural foam in densities ranging from 80 to 800kg/cu met and in a range of cell sizes. Successfully used in SMC doors, the proprietary foam acts as a breather, allowing gases to escape through the open cells and out of the mold. A single thin layer of SMC is used for each skin, molding pressures are very low (as the foam is deformable). During the mold cycle, the SMC skins lock, mechanically and chemically with the foam during the mold cycle.The low pressure and lack of abrasion permits molds that are not too heavy (unlike conventional SMC) and hence less expensive. The process permits use of woven fabrics to impart higher flexural strength to the panels.

DSM‘s Ultra High Molecular Weight Polyethylene (UHMWPE) fiber has been used as a ballistic material in an amphibious armoured personnel vehicle produced in Turkey. The lightweight, cost-effective ballistic tape has been used as spall liners that protect vehicle occupants from high-velocity fragments that are created when explosive shells send shock waves through the vehicle’s metal armor. The tape as a spall liner delivers a combination of high-end properties, including proven ballistic performance against improvised explosive devices (IEDs) and explosively formed penetrators (EFPs).

When it comes to protecting precious human lives, there should be no dearth in availability of various forms of ballistic protection from different materials, each unique and advantageous in its own way. Options ought to be aplenty.

 TRANSITION

467162_refinery

In the wake of the boom in North American energy (primarily related to shale in the U.S. and oil sands in Canada), the region has set off a supply shock that is sending ripples throughout the world. While geopolitical risks abound, market fundamentals suggest a more comfortable global oil/supply demand balance over the next five years [Yahoo Finance]. In the May release of its annual Medium-Term Oil Market Report, the International Energy Agency [IEA] forecasts North American supply to grow by 3.9 million barrels/day (mb/d) from 2012 to 2018 or nearly two-thirds of total forecast non-OPEC supply growth of 6 mb/d. World liquid production capacity is expected to grow by 8.4 mb/d-significantly faster than demand which is projected to expand by 6.9 mb/d. Global refining capacity will post even steeper growth, surging by 9.5 mb/d, led by China and the Middle East. European refiners will see no let-up from the squeeze caused by increasing U.S. product exports and the new Asian and Middle Eastern refining titans.

ON THE RIGHT TRACK

1417329_run_for_profit_concept_3

Such tectonic shifts in the energy supply & demand scenario could well impact the manufacturing sector. We are already witnessing  reshoring in the U.S., labor issues (manpower availability) in China (unthinkable a few years back) and the “charity begins at home” concept being obliquely drummed by many nations (to boost employment in their respective countries through domestic growth) with no overtone of jingoism.

Global trade could perhaps be affected initially, but is bound to pick up once the world economy gets back on track and growth clocks 5.5 % in 2-3 years.

Till the next post,

Cheers,

S. Sundaram

EmailSS@essjaycomposites.com

Twitter@essjaycomposite

Website: www.essjaycomposites.com

Advertisements