Category Archives: General World Happenings

Technology & design expertise enabling composites scale new frontiers

Hello all,

Welcome to another post……

Fingers crossed

1238327_questions

We are midway through the second quarter of 2016.The global economy continues to send mixed signals that basically stem from the rise and fall of crude oil price resembling more of a W-curve. The one thing that is certain in this fuzzy scenario is that not many have a clear idea as to how the oil price range will pan out for the rest of the year and going further into 2017, plus the fact that it is unlikely to breach $100 anytime before 2020. It will be foolhardy to make any predictions beyond the end of this decade. Geopolitics aside, nature has its own uncanny way of influencing oil prices marginally – case in point is the recent wildfire in the oil sands province of Western Canada affecting output of over one million barrels per day.

Growth is back, albeit…

Stay optimistic on ESSJAY COMPOSITES

World trade is down 0.4% this year on a volume basis and by 3.8% in dollar terms [Newsmax]. In early May, the World Bank lowered their 2016 global GDP forecast from 2.9% to 2.5%. The latest JP Morgan-Markit global manufacturing Purchasing Managers Index (PMI) showed the weakest quarterly performance (1Q 2016) in years. The good news however is that the global economy is slowing down and not contracting. The eurozone has actually experienced growth above its long-term average for the past six quarters – this is forecast to continue over the next two years as Europe stages a measured comeback [Export Development Canada].

The common view is that growth is back, though not seen by many. Above all the gloom and doom on the oil front, hope is the current elixir of the global economy.

Moving on…..

2015 – a record year for wind power

mill-859561-m

The Global Trends in Renewable Energy Investment 2016 report was released in end March by the Frankfurt School-UNEP Collaborating Center for Climate and Sustainable Energy Finance and Bloomberg New Energy Finance (BNEF). The report showed that the 2015 renewable energy market was dominated by solar photovoltaics and wind, which together added 118GW in generating capacity – far above the previous record of 94GW in 2014. Wind added 62GW and photovoltaics 56GW [United Nations News Center]. 2015 witnessed a 22% increase in wind power installations over 2014, globally. With around 433GW of cummulative wind power towards the end of last year, this source of renewable energy supplied more new power generation than any other technology in 2015, according to the International Energy Agency [Global Wind Energy Council].

US – offshore wind debut

1336182_windfarm

When it comes to offshore wind farms, Europe is years ahead compared to the rest of the world. Construction of the US’s first offshore wind farm in Rhode Island began in 2015 and is due to be completed by the end of this year [Gizmag]. The wind farm’s 30MW capacity will be met by five 6MW turbines from GE – turbine diameter is in the 150-meter range. Around 125,000MWh of electricity can be produced annually, once the wind farm is commissioned. Great news for carbon fiber and glass fiber producers.

Better late than never when it comes to the US nursing ambitions in offshore wind energy.

Resin chemistry – up to the challenge

351-glass-beakers-pv.jpg

The spray-up technique for molding GFRP products using a chopper gun has been prevalent for decades in spite of VOC (volatile organic compounds) issues such as conformance to environmental regulations such as MACT (Maximum Achievable Control Technology) Standards laid down by EPA. A recently developed VOC-free polyurea resin offers an affordable, non-toxic solution with a cure time under 60 minutes and drying time less than 30 seconds [Plastics Today]. Spraying is achieved with a plural component spray gun connected to a long heated hose and pump. The structural polyurea components are mixed in the spray gun nozzle during application – hence pre-mixing is dispensed with and there is essentially no waste. The polyurea product is reportedly waterproof while exhibiting superior physical properties such as hardness, high elongation and tensile strength.

Chemistry has been in the forefront in several breakthroughs involving thermosetting resins for composites processing over the years. This trend will continue in the foreseeable future too.

Composites – designer’s delight

lab-2-1-214701-m

Judicious choice of the form of fibrous reinforcement (whether as unidirectional roving, woven or multiaxial fabrics and combinations thereof) is the key to maximizing strength of composites without cost premium – designers will testify to this aspect. Flexibility in design has always been a much touted plus point of composites vis-a-vis metals. A recent example was the solution (by a car manufacturer) to reinforce a battery box molded from DLFT (direct long glass fiber reinforced thermoplastic) wherein PP was the thermoplastic matrix. By itself, the DLFT compression molded product was unable to meet the crash test requirement stipulation that a 29kg battery was not allowed to break through the console wall at an impact speed of 50.4km/hour – equivalent to a force of around 45 times that of gravity [Plastics Today]. The solution lay in using a 320x230mm, 0.5mm thick insert consisting of a single-layer fabric containing 47% by volume of continuous glass fiber roving predominantly aligned in the same direction that was fully consolidated, impregnated and embedded in a PP matrix [Bond Laminates]. The original insert based on a consolidated hybrid yarn fabric made of glass and PP fibers could not satisfy the impact requirement of high and low temperatures that necessitated the switch to the new insert with higher strength, stiffness and toughness over a broader temperature range (-30°C to +85°C). The replacement (insert) composite was around 8-9 times more impact resistant at room temperature than a pure DLFT-PP based compression molding compound. The stiffness was also six times greater and portends extended applications to components where a high degree of crash resistance is a key performance requirement.

Another classic, successful example of the permutations and combinations possible with fibrous reinforcements and their forms to result in an optimum design.

CNG – to the fore

105597_truck_5

The shift to CNG powered vehicles in general and trucks, in particular, is gaining momentum. UPS announced its intention in 2012 to purchase 150 composite-body vehicles as a way to reduce fuel consumption. It is now deepening its commitment to natural gas as a vehicle fuel with new CNG-fueled tractors and 12 new CNG fueling facilities [Fleets and Fuels]. This is in tune with its goal of logging one billion miles with its alternative fuel and advanced technology fleet by 2017. The CNG will be stored in four carbon fiber-wrapped composite cylinders [Hexagon] neck-mounted with anti-spin design to eliminate tank rotation that can stress fuel lines.

Leaders walk the talk and UPS is doing exactly that.

Conquering the next frontier

15752-a-laboratory-technician-taking-notes-pv.jpg

The composites industry is leaving no stone unturned in popularizing the widespread use of carbon fiber through innovative developments in resins and processing techniques. Current-day embryonic R&D work in general, sets the prospects of commercialization several years down the line. The same is the case in the application of metallocene catalysis for isotactic PP (iPP) in-situ to form multiwall carbon nanotube (MWCNT) composites [Plastics Today]. It has been found that 20-nm CNT fibers as well as silica -based glass fibers can immobilize the molecular methylaluminoxane (MAO) component of the metallocene catalyst system on their surfaces, resulting in high molecular weight iPP being polymerized and adsorbed over entire fiber surfaces. It is well known that adsorption has very close connotation to adhesion – in other words, adsorption is the accumulation and adhesion of molecules, ions, atoms. The composites thereby formed in-situ exhibit double the stiffness of unreinforced iPP with a MWCNT loading of just 2-3%. Molded composite parts are more likely to return to their original shapes if impacted (compared to conventional composites) in view of the inherent thermal properties of the iPP. The ability of these composites in absorbing impact energy is 4-5 times better than steel – thereby leading to safer vehicles.

Could this development accelerate further use of CFRP in automotive in the next decade?

Seismic reinforcement – a marvel

pexels-photo-medium (3).jpg

The practice in use of carbon fiber composites for seismic retrofits continues to be in vogue. The former head office building of Komatsu Seiren has been renovated with the world’s first seismic reinforcement that uses a thermoplastic carbon fiber composite as the seismic reinforcing material. It uses carbon fiber as the interlining, while its outer layer is covered with synthetic fiber and inorganic fiber. Finishing is done by impregnation with a thermoplastic resin.The 160-meter long spoolable roll weighs just 12kg (a metal wire with the same degree of strength is five time heavier). Unlike rigid rods that require drilling for installation, the thermoplastic carbon fiber composite is flexible and is secured using screws and an adhesive [Gizmodo]. It essentially works in the same way as the traditional brace-and-bolt; but, instead of anchoring the building walls to its foundation, it tethers the roof of the structure to the ground. In the event of an earthquake, the entire building moves together. Komatsu Seiren used the carbon fiber composite as an architectural element – the strands drape off the side of the building like a harp and are then attached to the building’s frame below the ground.

The Japanese have yet again proved their conceptualization and design prowess through this development!

Natural gas products such as CNG and LNG contain less carbon than any other fossil fuel. Natural gas vehicles produce at least 13 to 21% fewer GHG emissions than comparable gasoline and diesel fueled vehicles [The Motley Fool]. Variations of methane-based fuels are now in the offing. A new form of renewable natural gas that is 90% cheaper than conventional fuels has been produced on a mass scale through a process that collects methane gas from farms and landfills, purifying the gas of impurities and then distributing it through pipelines. GHG emissions reduction ranges from 50 to 125% depending on the source of renewable natural gas (biogas). UPS is reportedly one of the users of the renewable natural gas.

Composites could be the ultimate beneficiary as the material of construction for storage tanks for the vehicles using renewable natural gas.

The breakthroughs continue unabated, though not at breakneck speed; but at a pace that allows the composites industry to throw the gauntlet to competing traditional materials for commercial applications. After all, when it comes to material substitution, composites still have a single digit penetration level overall – but it is growing for sure!

Till the next post,

Cheers,

S. Sundaram

Twitter: @essjaycomposite

Website: www.essjaycomposites.com

We specialize in customized Market Analysis Reports in Composites

 

Advertisements

Next-shoring : the latest strategy for business competitiveness and growth

Hello all,

Here we go again with another post on the latest in global economics, composites and polymers while chipping in occasionally with tidbits on entertainment and sports. A truncated February has been the prime reason for deferring the publication of this post.

RESHAPING THE WORLD

world-background-vii-1037220-m

The impact of GDP growth of nations on the composites industry in the respective countries has never been so obvious since the beginning of the global economic downturn in 2009. Questions abound on whether regions/countries have hit the bottom of the “U” and there is an uptick in the economy. While experts continue to be flummoxed at times by conflicting reports on the health of the Chinese economy (the debate is unending), the U.S., UK and Germany continue to forge ahead with bright 2014 prospects.

The theme of the 2014 World Economic Forum meet in late January in Davos was aptly “Reshaping the World”. Leaders recognized the skills of nations to navigate the complexity and interconnectivity of the changing world, with profound political, economic, social and technological forces shaping our lives. There could not have been a better way to succintly sum up the global scenario. A discerning feature was the U.S. vs. Europe competitiveness on the energy front with the former being adjudged the clear winner much to the dispirit of the Europeans [CNBC]. The American euphoria could perhaps be short-lived if one were to go by reports of the recent shale gas exploration success in the UK – not a real match in terms of barrels per day of oil or cubic feet of natural gas, but still a significant step.

For those who followed the Sochi 2014 Winter Olympics, the (healthy) U.S.- European rivalry was all too obvious, driven largely by sportsmanship and adrenalin pumping (will to win) !

THINWALLING – THE NORM

moving-vehicles-in-the-rain-9-359999-m

Automotive instrument panel retainers in composites have been around for more than a decade. However, developments never cease in making parts thinner and lighter. An injection-molded thinwall instrument panel retainer in the 2014 Chrysler Jeep Cherokee is reportedly the industry’s first to attain 2.0mm thickness employing long glass fiber reinforced polypropylene (PP) with a 30% fiber loading. The part is reportedly 27% lighter than the previous talc-filled PP version (2.5 to 4.0mm thickness). Thinwalling enabled a cycle time reduction of approximately 30% versus the conventional 3.0mm thick part due to faster cooling time and a nominal cost reduction. Advanced fiber orientation was employed in the design of the new part to properly set up the injection mold for warpage mitigation [Plastics Today].

Lightweighting has almost become a fetish in the automotive industry and the collaborative efforts of OEMs, fiber producers and machinery manufacturers continue to reap rich dividends.

Another recent development has been a weight-optimized commercial vehicle storage compartment flap with a 70% uni-directional glass fiber reinforced PP tape. The thermoplastic tape laying method provides outstanding mechanical properties, resilience and ability to form complex shapes apart from reducing waste and cost. Yet another automotive development has been an injection-molded glass fiber reinforced polyphenylene sulfide (PPS) head-up display that shows important information directly at the driver’s eye level. This rigid, temperature-resistant material features high dimensional stability and low warpage, enabling very low tolerances that allow precise dimensions for various components. The components of a head-up display-case bearing housings, the optical rail and mirror holder should not change shape even slightly, that makes the reinforced PPS an ideal material for this application [Plastics Today].

CARBON FIBER – ALL THE WAY

fast-cars-1-362545-m

It was mostly about carbon fiber composites at the January 2014 Detroit Auto Show. The auto industry’s carbon fiber dreams are increasingly making it to the street. GM and BMW introduced cars at the show that use more CFRP than their previous models [Plastics News]. The Chevrolet Corvette Z 06 has a standard removable carbon fiber roof panel enabling drivers the luxury of an open air option without losing their composite cover. This is a follow up on the 2013 Corvette Stingray with a carbon fiber hood and fixed roof. BMWs new M3 sedan and M4 coupe both have carbon fiber roof systems with potential weight reduction of 80kgs in each model. Toyota’s FT-1 concept car utilizes a carbon fiber exterior door panel made in a single step in one large mold. The large one-piece hood swoops down for a split front end with exposed carbon fiber trim that skims over the surface. Nissan’s Q50 Eau Rouge concept luxury car utilizes aerodynamics for the carbon fiber exterior trim. The curving capabilities available through molding is used to funnel passing air directly where it is needed to cool the rear brakes of the sports car.

Another way to reduce drag co-efficient and improve fuel economy, apart from conventional weight reduction techniques.

NEXT-SHORING IS THE NEW TREND

forex-trading-concept-2-1425517-m

Demand for manufactured goods in emerging markets is surging and fragmenting, as factory costs shift technological advances with more powerful robotics and the internet creating a new range of opportunities for manufacturers to digitize operations. Manufacturing strategies built on labor-cost arbitrage are becoming outmoded. The race is on to get ahead of what comes next. The new trend is to place greater emphasis on proximity to both demand and innovation while making location decisions that balance economies of scale against the growing diversity of tastes within and across global markets. First it was offshoring (arbitrage labor costs by using low-wage workers in developing nations). Then came reshoring -return of manufacturing to developed markets as wages rose in emerging nations. The latest mantra is next-shoring, which  places emphasis on proximity to demand and proximity to innovation. Both are crucial in a world where evolving demand from new markets places a premium on the ability to adapt products to different regions. Next-shoring strategies encompass a diverse and agile set of production locations, a rich orientation of innovation-centered partnerships and a strong focus on technical skills [Mckinsey].

Recent examples from an array ? Toray’s latest announcement on plans to invest in a new carbon fiber integrated- manufacturing facility in South Carolina in the U.S.; Jushi venturing out of China and setting up new glass fiber manufacturing plant in Egypt. Watch out for many more announcements of new plants by both fiber and resin manufacturers in the near future.

Dynamics of change….embracing it and being proactive is essential for businesses to survive. More so, a fundamental prerequisite for market leaders to retain numero uno status in their respective market segments.

INNOVATIVE POTENT COMBOS

test-tubes-1258732-m

A recent trend in thermoplastic composites features not only a glass fiber reinforced prepreg, but also the cutting and incorporation of long fibers into the overmolding material at the injection machine itself. Arburg highlights the ability, using the latter, to modify glass fiber length according to the application and the cost advantage of not having to buy pre-compounded LFT granules. Sophisticated robotics and infrared cameras monitor the effectiveness of the preheating station for the prepreg. However, it is not clear at this stage as to how many applications will require the use of both LFTs and prepregs [Injection World]. In what can be considered as a 21st century version of RTM, manufacturing automotive products in thermoplastic composites using in-situ polymerization of caprolactam into polyamide6 in a modified injection molding machine, is making waves. In a prototype demonstration, the liquid components were injected over a 3D glass fabric preform. The stated advantages over preforms created by thermoforming a prepreg sheet is that the preform is impregnated and formed at the same time – hence, more complicated geometries and more surface finishes can be obtained.

NOVELTY IS THE KEY

industrial-grunge-series-offi-176099-m

A company claims that it can boost the flexural stiffness of fiber reinforced profiles by more than 500% by incorporating continuous long glass fibers in the profile – but only in the places where the reinforcement is needed. It claims lower cost than equivalent metal or pultruded products. By eliminating the need for metallic reinforcements, the profiles (displayed at K2013) are the ideal solution in environments where thermal conduction and corrosion are an issue. The use of glass fiber instead of aluminum or steel improves the thermal efficiency of buildings [Pipe &Profile Extrusion]. The successful product was developed through a combination of pultrusion and extrusion technologies. In a similar fashion, a German company has developed endless fiber reinforced polymer composites ideal for lightweight, high strength applications. During extrusion the profile is uni-directional reinforced through pre-impregnated ribbons in a longitudinal direction ensuring reliable transfer of the high pull-off forces. This also counteracts the majority of stress conditions experienced by a prismatic profile. The profiles consist of a thermoplastic matrix reinforced with continuous fibers with a specific fiber orientation which are created in an integrated winding station. The products can be made with different thermoplastics reinforced with glass or carbon fiber. Use of carbon fiber enables production of pipes and profiles that are more lightweight than extruded aluminum profiles. By selecting the correct combination of profile geometry, thermoplastic material, fiber and its orientation, the profile can be adapted to suit the load in terms of torsion, tensile rigidity and tensile strength. The profiles have impact strength, low weight, exhibit low thermal expansion and a high degree of insulation. Products are available as tubes and a variety of profile shapes including triangular, I-beam, square and rectangular [Pipe &Profile Extrusion].

Combining pultrusion and extrusion processing…..novelty has no limits.

NATURAL GAS POWER

petrol or gasoline in the US on ESSJAY COMPOSITES

Improved hydraulic fracturing and directional drilling has helped unlock vast new tight oil supplies in several states in the U.S. Per International Energy Agency, crude oil production rose by 990,000 barrels /day in 2013 – an increase of 15% over 2012. That’s the fastest such absolute growth of any country in 20 years [Time]. The fracking revolution has simultaneously unearthed vast stores of natural gas. Corporate America is on a spree in converting their trucking fleets to natural gas and building more fueling stations. Proctor & Gamble, United Parcel Service and Frito-Lay North America are expanding their natural gas fleets. Trucking companies are increasing their number of natural gas vehicles while energy firms are busy building infrastructure for natural gas in the U.S. Technology has made natural gas a real game changer. CNG tanks will continue to be in great demand, resulting in a significant increase in use of carbon fiber for the tanks.

RESIN PRICES – ON THE RISE

vector-graphic-1-1084293-m

The shale gas revolution that has resulted in the U.S. unearthing a bounty of oil and hence becoming less dependent on imported crude oil, continues to have a profound effect on availability of propylene (thereby causing PP price to rise by more than 5 cents/lb). Ditto for thermosetting resins due to the benzene-styrene effect (as forecast in our January post). Benzene price was at a record high in January. Almost all major thermosetting resin producers globally announced price increases in early February for unsaturated polyester and vinyl ester resins (blame the styrene effect!). While plans are already afoot on the propane dehydrogenation route for increased production/supply of propylene (with a bit of luck, from 2015); the quest for a commercially viable alternate route to benzene (and hence styrene) needs no overemphasis. Brace yourself for further price hikes in 2014 and beyond.

Time for Low Styrene-Emission (LSE) thermosetting resins to make a greater impact through more widespread use ? Perhaps……..

Global warming has been the reason attributed to the bitterly cold weather in several parts of North America, chiefly the U.S. Hedgehog day in early February threw up contradictory predictions on an early spring. Change is everywhere – be it political, the economy, business investment climate or the weather.

As mortals, we have no option but to embrace change at each stage. Ditto for change in this blog’s format, which is in the works.

The Oscar awards are round the corner and the world expectantly awaits the winners. Fingers crossed on this one…….

Till the April post,

Cheers,

S. Sundaram

EmailSS@essjaycomposites.com

Twitter@essjaycomposite

Website: www.essjaycomposites.com

Gung ho or Cautious Optimism? Its a toss-up!

Hello everyone,

The European Commission’s latest economic forecast is sobering reading for anyone who thinks the euro-zone economy is turning the corner [Quartz].

CLEAR TRENDS AHEAD ?

run-for-profit-concept-1-1417327-m

Its not all gloom and doom. The 2014 outlook is better. One forward-looking indicator which is the latest Purchasing Managers’ Index (PMI) is above the 50 mark (the level that suggests economic expansion) for the fourth month running. German factory orders rose much faster than expected, Spain foresees a broader uptick in consumer spending. British indicators added to evidence that the UK is spearheading Europe’s recovery from recession [Reuters]. Latest figures show that the US economy grew at annual pace of 2.8% in Q3 – a growth rate that was faster than expected compared to 2.5% in Q2 [BBC News].

All signs point to a gradual global recovery with consistently high growth from 2015.

NEW DEVELOPMENTS – VALIDATION

1335495_green_tick_in_circle

Multi-axial fabrics have been the driving force for more than a decade in pushing the performance level of composites. The most recent development is the 3D weaving process for manufacturing high performance carbon fiber composites. A new 3D weaving loom to produce prototype 3D fabrics has been commissioned at Belfast; wherein preforms can be woven in a variety of widths, thicknesses, patterns, shapes and strengths [Plastics & Rubber Weekly]. Research has shown that the 3D composite has significantly better performance, including 15% higher fatigue properties and a crack propagation value up to 20 times higher than 2D reinforced epoxy laminates.

For a 3D orthogonal carbon fiber weave, geometrical parameters characterizing the unit cell have been quantified using micro-computed Tomography and image analysis. Novel procedures for generation of unit cell modes, reflecting systematic local variations in yarn paths and yarn cross-sections and discretization into voxels for numerical analysis have been implemented. Resin flow during reinforcement impregnation can be simulated using computational fluid dynamics to predict the in-plane permeability. A significant effect of the binder configuration at the fabric surface on permeability was observed, which is to be expected. In-plane tensile properties of composites predicted using mechanical finite element analysis showed good quantitative agreement with experimental results. Accurate modeling of fabric surface layers predicted a reduction of the composite strength, specifically in the direction of yarns with crimp caused by compression at binder cross-over points [Sciencia].

The ability to predict mechanical properties and behavior of composites using fabrics has been a salient feature in recent times – designers continue to play a prominent role in facilitating such modeling and simulation before commercial production.

POLYAMIDE TO POLYPROPYLENE

engine-2-260099-m

Glass fiber reinforced polyamide (PA)  has generally been the material of choice for air intake manifolds in automobiles. Continuous technological developments in tailoring highly engineered polypropylene (PP) compounds to required stiffness aspects has resulted in Volkswagen being the first automaker to switch from PA to short glass fiber reinforced PP for this application. Benefits include a 15% weight saving, superior acoustic performance and greater production cost efficiency. More short and long glass fiber reinforced PP are now being used in instrument panel carriers, front-end modules and under-the-hood applications [Plastics Today]. Borealis has opened a new long glass fiber reinforced PP plant in Italy that uses pultrusion to  achieve increased fiber length in both pellets and parts. The glass fibers are typically arranged parallel in the pellets, all having the same length as the pellet itself.

CFRP MAKING INROADS

car-view-from-top-574715-m

It keeps getting better… I mean the reduction in cycle time when processing CFRP for automotive applications. A recent demonstration of a  production-line-ready-carbon fiber reinforced roof shell with a polyurethane (PU) matrix says it all. The component can be used as-is or painted straight away as the fiber structure is not visible on the surface. The Class A surface finish is assured through adoption of a two-stage production process [Plastics Today]. Firstly a carbon fiber preform is robotically placed in a RTM compression molding tool and impregnated with PU resin. The 2mm thick semi-finished part is then  robotically transferred to a second RTM compression molding station where a 0.2 mm aliphatic polyurethane UV-stable coating is applied. The part is then trimmed to its final shape. Overall fiber content is around 50%. The PU for both the part core and surface is poured in when the mold is slightly open (compression RTM). This results in very low flow resistance which allows injection of the PU system with high pour rates. The mold is then closed. The process not only improves fiber wetting, but also  prevents fibers from moving around [Krauss Mafffei].

This adds to the growing list of successful synergistic commercial developments in the automotive sector between auto, fiber, resin and machinery producers, especially in CFRP.

INTEGRATION – BENEFITS

140789_lamborghini_murcilago

In one of my earlier posts, I had mentioned the experimental introduction of polycarbonate (PC) in lieu of traditional glass in automobiles.  SABIC‘s glazing technology to protect the plastic and ensure PC meets safety and performance requirements has met success in sunroof systems especially in Europe and is now making its debut on side windows of the Volkswagen AG’s XL1 high-efficiency hybrid car that also touts a CFRP body. The unconventional design has a streamlined shape to improve the car’s aerodynamics. It is the first vehicle to feature advanced plasma coating on two-component injection-molded PC windows. The side windows are 33% lighter than conventional glass and can still roll down – making it the first PC, roll down, moving windows used in the auto industry. SABIC is also showcasing a long glass fiber (GF) reinforced PP for the tailgate which is 30% lighter along with long GF reinforced PBT for structural components. System integration has resulted in a weight saving of almost 12 kgs [Plastics News].

ONE-UPMANSHIP

oil-refinery-865589-m

The fracking technique success in the US to extract gas and oil from shale has caught the attention Down Under. An Australian company announced successful gas flows from a horizontal fracked well [Shale Gas Now]. The US energy drilling boom is revolutionizing the niche market for liquefied petroleum gas (LPG). Analysts opine that North America will vie with the Middle East as the world’s top supply region this year and in 2014 at average daily production rates of around 2 million barrels per day. Of the anticipated US LPG surplus of  nearly 350,000 barrels per day by 2015,  about 110,000 barrels per day could reach Asian markets. This game-changing development will redraw global LPG trade flows and force Middle Eastern LPG exporters to lower prices [Trade Arabia]. Mammoth LPG export terminals are being built in the US.

The PE/PP market dynamics will witness a major shift in the next five years consequent to the shale gas revolution and the US slowly becoming a net exporter rather than importer (as has been the case till earlier this year). Crude oil prices, barring geo-political issues, could well be heading south in the coming years, thanks to the abundance of natural gas.

ACOUSTIC REVELATION

sound-analyse-973270-m

An unique non-woven fabric that helps solve car makers’ needs to improve acoustics and reduce weight without breaking the bank, is making waves. Based on the “physics of acoustics “, the technique focuses on two dominant properties of part design – thickness and resistance to airflow. As sound moves through air in waves of minute pressure variations, the solution has to work for  long wavelengths (low frequency) and short wavelengths (high frequency). The thickness of the existing insulation layer determines what low frequency wavelengths can be absorbed. The new non-woven material replaces the traditional black scrim on the surface and controls the mid and high frequency wave length by managing the sound pressure level variations and trapping the energy in the insulation layer of the part. This makes the composite more efficient than just the homogeneous insulation material by itself [Innovation in Textiles]. In a recently launched automotive hood liner, weight saving of almost 950 grams/ sq meter (>2lbs/sq meter) was achieved with this non-woven fabric – the acoustics stayed the same, there was cost reduction generated in the  raw material line, and additional improvements in manufacturing related to shorter cycle times required to mold a 600gsm glass fiber part as compared a 1,600gsm part [Nexus].

The addition of nanoparticles to polymeric matrices has shown great promise for improving mechanical and thermal properties – however, this improvement comes with a decrease of processability. In a typical case, two different forms of glass fiber – one a bi-axial fabric and the other an uni-directional glass fiber mat were sprayed with carbon nanofibers on both sides. Mechanical properties of composites produces by vacuum-assisted RTM were obtained. Permeability, as a measure of of processability of the sprayed glass fiber mats, were measured. While there was an increase in mechanical properties, permeability was found to diminish with addition of carbon nanofibers [Sciencia].

DUAL SYNERGY

mercedes-cls-316003-m

Combining injection and compression molding to achieve weight reductions of up to 50% in automobiles? Could be a commercial reality, per Daimler. Pressed components allow a marked reduction in weight, whilst injection molded components enable the incorporation of ribs to ensure the necessary stability and strength as well as opening up a broad scope for shaping to enable realization of different components. In the new process, ribs and attachment points are injected directly into the pressed carrier while still hot. The starting material for the carrier takes the form of hybrid bonded fiber fabrics consisting of thermoplastic and reinforcing fibers. Use of the same materials for the bonded fiber fabric and the injection molding process results in an optimum bond. The technology enables simple functional integration and thin wall thicknesses. Interior weight savings of up to 5kg per vehicle can be reportedly achieved with this technology. The weight reduction is accompanied by reduced material input – consequently, reduction in CO2 emissions from the component manufacturing process. Compared to the compression molding process, costs can be reduced by up to 10 %. Further, components can be produced without any increase in costs compared to the injection molding process due to reduced material input and use of suitable materials. The first parts for pillar and door trims with this technology goes into series production in one of the next Mercedes-Benz model lines [Plastics Today].

POWER SHIFT TO NATURAL GAS

fuel-station-340813-m

Natural gas powered trucks and vehicles (at the expense of diesel) is on the increase in the US. At Walt Disney’s Disneyland in California, the year round guest transportation services to and from theme parks, shopping, dining and parking areas features eco-friendly buses powered by cheap, abundant clean American natural gas. One company alone has built more than 400 natural gas refueling stations in the US [Motley Fool]. Ford’s recent announcement that its customers will be able to get the F-150 truck factory equipped to run on either natural gas or gasoline is symbolic of the increase reliance on (less expensive) natural gas. United Parcel Service is projected to control the most extensive  Liquefied Natural Gas (LNG) fleet by the end of 2014. Currently, the US estimated cost/gallon of diesel is $3.78, gasoline $3.28, CNG $2.28 and LNG $ 2.50. Home retailer Lowe’s is well on its way to replace all diesel powered fleet with natural gas trucks by 2018.

About 5% of all heavy duty trucks sold in 2014 will run on natural gas – up from 1% this year.

The success of fracking in the US has resulted in an abundance of natural gas. The UK and Australia have also been successful in exploiting the technology, with more countries likely to follow suit. The direct impact is use of natural gas derived ethane as feedstock (rather than crude oil) for cracking to yield ethylene. There is bound to be a major shift in polyolefins price and availability.

The dependence on crude oil is likely to be marginalized in the next five years. It is not without reason that oil-rich countries such as Saudi Arabia, Abu Dhabi are already implementing plans in moving away from oil dependence by creating Special Economic Zones for mega infrastructure projects (water desalination plants in Saudi being a prime example) and industrial parks (Plastics Cluster in Abu Dhabi – one of the world’s largest industrial parks dedicated to plastics conversion).

INVESTMENT & FORESIGHT

market-share-report-a-pie-chart-854196-m

A few glass fiber producers have already announced price hikes. Resin producers did so in Q3. Platinum and rhodium prices are attractive enough to warrant investment in capacity expansion of glass fiber plants. With the Dreamliner and Airbus A350 ramping up commercial production, aerospace grade carbon fiber is also poised to find stability in pricing (as in the past).

2014 should be a good year for fiber and resin producers alike and for the composites industry at large.

In view of the holiday season in December, our next post will be published in early January 2014.

Till then,

Cheers,

S. Sundaram

EmailSS@essjaycomposites.com

Twitter@essjaycomposite

Website: www.essjaycomposites.com

Materials Technology Breakthroughs – are we ahead of the curve ?

Hello all,

As individuals and organizations commence introspection of H1 2013…….

SCORCHING HEAT

1377701_sunshine

“Human-caused climate change is already helping shift the planet’s natural balance according to scientists – creating more heatwaves, drought and natural downpours. A stormy and expensive reality that is already at our doorsteps”. That was the screaming headline on ABC News on the last day of June. The extreme weather that we have witnessed globally in the past few weeks proved once again how fickle mother nature could be – is mankind to be blamed for what is being witnessed ? Ask the protagonists of climate change.

The debate will continue for some time to come.

RISE AND FALL

936479_money_symbols_abstract_2

The first half of 2013 has just gone by and a quick analysis is like the proverbial curate’s egg – good in parts. The continued decline in China‘s manufacturing activity as reflected in the official Purchasing Managers’ Index (PMI) slipping to 50.1 in June (from 50.8 in May) has pundits proclaiming weakening of both external and domestic demand and critics describing the nation as going from “driver to drag” on global growth [CNBC]. Surprisingly, Spain‘s PMI moved up to 50 (from 48.1 in May) with manufacturing activity recording the strongest reading in more than two years. The June PMI for the eurozone as a whole for the manufacturing sector rose to a 16-month high of 48.8, up from May’s reading of 48.3. U.S. manufacturing activity bounced back in June with the Institute for Supply Management (ISM) index rising to 50.9 in June (from 49.0 in May) [BBC News].

When it comes to technical fabrics, the sky is the limit on fabric styles and innovations in machine technology. Leading producer Karl Mayer has expanded its range of products with the launch of its new multi-axial machine for producing composites from which rotors of wind turbines are made. The new Maxtronic Multiaxial has not yet been formally released into the market. The new model incorporates a well thought-out design of the transport chains and the weft-laying units guarantee absolute uniformity and constant yarn tension levels when processing technical yarns at every laying angle. The model, that reportedly offers a high level of productivity, combines high speed and powerful performance with gentle yarns treatment and accuracy. Like Malitronic, its predecessor, the Maxtronic is available in a working width of 100 inches and the finished textile can be cut into webs of the required width directly on the machine, due to the integrated cutting device. The machine operates in the standard gauges of E5 and E6 [ Knitting Industry].

FRINGE BENEFITS

105597_truck_5

Light weight injection molded truck oil pans made from polyamide66 reinforced with 35% glass fiber displacing traditional aluminum, could well be the trend in future. Apart from being lighter, the new pan is resistant to chip impacting from stone and gravel, coupled with a 2dB reduction in noise level. The excellent flowability of the molding compound due to low melt viscosity enables fast set-up and molding cycles, allowing precise tolerance control as the material flows easily into complex thin sections of the mold [Plastics & Rubber Weekly].

COLLABORATE TO SUCCEED

916494_car

A synergistic collaboration between Du Pont and Citroen has resulted in the successful development of a composite side impact beam that has passed crash tests. Made from continuous glass fiber reinforced polyamide66 laminate, the composite beam led to a 40% weight reduction over traditional ultra-high strength steel. The composite part is shaped into the beam in a heating and forming process in which the material crystallizes. In a second stage, steel connectors are inserted and the part is back molded in polyamide66. The beam shows very high stiffness in the -40C to +90C range. The composite part absorbs more energy than metal and short-glass fiber reinforced polymer beams [Plastics News].

As part of a vehicle’s shock absorber system, automaker Fiat has developed the jounce bumper with a thermoplastic elastomer (instead of PU foam) that delivers high elastic recovery, excellent fatigue and durability and low stiffness variation over a wide range of temperatures. It dampens noise, vibration and harshness (NVH) by preventing the metal shock absorber spring from fully compacting from shock impacts due to potholes, curb and objects on the road. It also offers an additional spring function to improve vehicle behavior when negotiating smaller holes on the road surface and cobblestones or quick direction changes or sudden braking [Plastics Today]. Several OEMs have tested the new design on a variety of vehicles over tens of thousands of kilometers without any behavioral issues. The new design delivers similar performance to PU, but with lower part damage. After traversing 3,000km of cobblestoned roads, the new bumper exhibited less than 3 % permanent deformation, far below the industry standard of 10%.

LUSTER SANS METAL

1092950_speedometer

A metallic luster film containing no metal whatsoever is replacing solutions based on plating, coating and metal vapor deposition. Toray has introduced a conductive PET-based film of thickness 100-145 micrometers comprising several hundred individual lamellar layers or more formed during the extrusion process with precise control of layer thickness. The refractive effect of these individual layers in the film can be exploited in components such as speedometers and decorative components whose color can be varied from chrome-like to a light transmitting color through light application. It can also be used in the form of discrete film inserts in injection molding [Plastics Today].

Welcome to a new type of carbon fiber reinforced graphite material designed for industrial heat treatment applications. The carbon-fiber-reinforced-carbon (CFRC) high-strength composite is said to be ideal for use in high-temperature processes requiring lightweight and temperature resistant materials such as heat treatment of steel components for the automotive and aerospace industry or coating of silicon wafers in the photovoltaics (PV) industry. Use of uni-directional CF rather than woven CF reportedly offers dramatically improved performance [Plastics Today].

GREEN ENERGY…GROWING

1208043_going_green_pays_off

Renewable energy may supply more electricity than nuclear reactors or natural gas by 2016, spurred by declining costs and growing demand in emerging markets, according to a statement released by the International Energy Agency [IEA] in the last week of June. Wind, solar, bio-energy and geothermal use may grow 40% in the next five years, double the 20% pace in 2011. The findings are another indication that renewables increasingly are rivaling fossil fuels on price without subsidy, as the cost of wind energy declines. Emerging markets will be the largest drivers of growth for renewables in the next few years with China accounting for 40% or about 310GW of new capacity. Growth will slow in industrial nations because of subsidy reductions and uncertainty about government support for the technology according to IEA. IEA’s push for nations to end fossil fuel subsidies will continue while noting that incentives for coal, oil and gas in 2011 were globally six times higher than renewables [Bloomberg].

An alternate technology for lightweight compressed natural gas and hydrogen fuel tanks that utilizes selective fiber placement of carbon fiber has resulted in significant reduction in weight and cost through a 20% reduction in material utilization. The methodology involved analysis of discrete composite elements for a manufacturing process with discontinuous reinforcing fibers [Plastics Today].

RE-DEFINING REFINING

467162_refinery

If the U.S. is making waves in successfully exploiting fracking technology for shale gas exploration, can the UK be far behind? Following a report released by the British Geological Survey [BGS] in the last week of June that shale gas resources of around 40 trillion cubic meters lay underground across much of the North of England; the Government announced that companies looking to extract shale gas shall offer communities located near exploratory drilling facilities £100,000, while those next to production sites would receive 1% of revenues. The shale strata identified by BGS are reportedly much thicker than those in the U.S.- hence one UK extraction station should be able to extract as much as several U.S. ones, thereby minimizing the effect on the environment [Plastics & Rubber Weekly].

The market dynamics on PE/PP could change even more if a fraction of the potential shale gas is successfully tapped for extraction.

The fact that a variety of plastic and non-plastic materials will play key roles in vehicle lightweighting implies that various material combinations will need to be somehow bonded together – enter the role of adhesives. Whilst high-performance and specialty vehicles alike are increasingly employing structural adhesives; in the longer term, even mass-market vehicles will increasingly be glued together [Plastics Today]. Experts predict that the amount of adhesive employed in a car may grow by as much as 33% in the next 5-10 years from the current 15kg. The advent of higher performance structural adhesives implies load-bearing parts and components such as doors, bumpers and struts can now be bonded and stiffened as well. Case in point is the Cadillac CTS that uses 387 feet of structural adhesives. Hybrid structural adhesives are the latest trend that offer high structural and damping performance, combining the performance of three different adhesive bonding technologies: the resistance and mechanical strength of epoxies, elasticity of PU and fast assembly rates of MMA. This new breed of adhesives combines elongation, low modulus and high mechanical performance with high impact, peel and shear strength for a range of temperatures from -80C to +140C. The use of primer can be dispensed with as the bond remains flexible, yet allows rapid handling of the bonded parts. The broadest range of heterogeneous materials can be joined including treated metals, composites, ABS and PC, glass, zinc, CFRP, SMC/BMC/RTM compounds. This class of adhesives replaces welding and riveting methods of joining, couples damping with acoustic features, mitigates noise, exhibits excellent elasticity and peel strength [Aderis].

Conquering the last frontier in adhesive technology ?

PP vs. POLYAMIDE

1080691_engine

It was evident at Chinaplas 2013 that local OEMs are looking to up the PP usage in vehicles from current levels of 45-55kg. Use of PP in vehicles is the highest in Europe and some new luxury vehicles are using almost 90kgs [Plastics Today]. Large cars in Europe traditionally use PC and PC/ABS extensively. Polyamide has hitherto been the preferred choice for under-the-hood applications. Henceforth, PP could make inroads with short-fiber reinforced PP likely to storm the polyamide bastion of intake manifolds, thanks to technological advancements in PP properties.

Now, if that happens, it would be no small feat !

An ASTM International plastics committee has recently announced a big change to the Resin Identification Code. The iconic chasing-arrows symbol will be replaced by a solid equilateral triangle [Plastics News]. There will be a transitional period in switching to the triangle, though.

Changing times….. and changing rules.

NORTHWARD TREND

1083424_market_on_the_rise__1

A June report on automotive plastics estimates the global market demand to top£30 billion by 2018 with the industry expected to grow more than 13 % annually between 2013 and 2018. This should translate into sales of £30 billion by 2018 compared to £14 billion in 2012. Around 50% of automotive plastics is used in Asia followed by Europe with 28% and North America with 11.3%. PP, the largest single base resin, constitutes 37% of all plastics used [Plastics & Rubber Weekly].

Scottish industrial textiles producer Don&Low has developed a new range of non-woven composite fabrics that combine spunbond non-wovens with innovative reflective foils and metallized films that find use for a variety of functional and decorative purposes. The benefits of the reflective composites include low emissivity, reflective surface that acts as a radiant barrier to improve thermal insulation either to improve heat retention or to assist in keeping items cool and also allow passage of water vapor(breathable), while at the same, being water repellant [Innovation in Textiles].

A single-piece air extractor (hood scoop) used on GM‘s Chevrolet Camaro ZL1 employs a carbon fiber reinforced epoxy prepreg. The component was formed on a tool fabricated from a low-temperature molding compound tooling material. The resin was chosen for its exceptional clarity and ability to produce an aesthetically pleasing rigid structure directly from the mold with minimal reworking requirements.

WIND-SAFE BANKING

524075_wind_power_plants

With the current glut in natural gas in the U.S., there could be a significant amount of domestic LNG being shipped overseas if applications under consideration by the Federal Energy Regulatory Commission [FERC] are reviewed favorably. This could result in a spike in domestic natural gas price that currently hovers around $4/MBTU – compared to $12/MBTU in Europe and $14/MBTU in Japan. If prices rise, coal could replace natural gas – hence the focus should be more on wind energy [Renewable Energy World].

One hopes better sense prevails on this issue.

In view of the ensuing holidays, our next blog will be posted in early September when most readers (from over 100 countries) would be back after their summer sojourn.

Till then,

Cheers,

S. Sundaram

EmailSS@essjaycomposites.com

Twitter@essjaycomposite

Website: www.essjaycomposites.com

Lightweighting with Polymers & Composites – the Quest is Perennial

Hello all,

The report card on performance of nations and leading companies for Q1 2013 is out and has been the subject of review and intense debate throughout April.

HITS AND MISSES

1198394_world_map

China’s gross domestic product (GDP) came in at 7.7%, down from the previous quarter’s 7.9%. In March, industrial production increased 8.9%, just shy of the 10.1 % lift [China Spectator]. U.S. GDP increased at an annual rate of 2.5% from Q4 2012 and was just short of the expected 3.0% [Hot Air]. Singapore’s GDP contracted 1.4% over the previous quarter. U.K.’s GDP expanded 0.3% quarter-on-quarter driven by the services sector growth and bounce-back in North sea oil and gas output [Trading Economics]. The German economy stabilized in the first quarter after contracting in Q4 2012 [RTT News].

IN RECOVERY MODE ?

1204327_euros

A Reuters column last weekend stated that officials believe that the euro zone had turned the corner, sharpening the focus on longer-term reforms and structures……definitely news to cheer about from a global perspective. Which begs the question – has the euro zone hit the bottom of the U ?

After the “Jack-Rabbit” start to 2013, are we in for a spring swoon to the stock market ? Predictions are for a mitigated spring slide. There are several positives that may offset some of the negatives making for a potential decline that may be less steep than seen in recent years [Business Insider].

There was more news to cheer about last weekend. The Boeing 787 Dreamliner was back in the skies following a successful commercial flight on April 27.  Aerospace grade carbon fiber producers and CFRP processors, in particular, would be heaving a sigh of relief as the grounding had really nothing to do with composites, but was yet  holding back progress in a muted manner.

REV IT UP

1171150_background_with_arrows

Global assembly of light vehicles is forecast to reach 82.1 million units in 2013, representing a 4% year-on-year growth. North American assembly is forecast to reach 15.9 million units, representing a 3.6% increase from 2012, driven primarily by the U.S. automotive market. China is projected to achieve assembly of 18.9 million units – an impressive jump of 14% from 2012 [Plastics Today].

A highly reinforced polyamide 6 with 60% glass fiber loading renders metal superfluous in front end carriers for passenger cars. In addition to mounts for the headlamps, the front end carrier of the new Skoda Octavia also integrates injection-molded mounts for the radiator, hood lock, anti-theft system and air ducts. The composite product, with just one injection mold, eliminates the complicated handling and shaping of sheet metal; has significantly better mechanical properties, displays good flow, allows for very thin walls, topping off with a finely grained structure that fits well with the overall visual appearance [Plastics Today].

IN TOP GEAR

466305_subaru_impreza_1

Heavy steel leaf springs in automotive suspension systems may well make way for composites. Henkel has developed a RTM process for composite leaf springs using glass fiber and polyurethane (PU) resin. The GFRP leaf springs are reportedly 65% lighter than their steel counterpart. The PU resin cures significantly faster (than epoxy), penetrates and impregnates the glass fiber more easily due to its low viscosity, thereby enabling very short injection time. The exceptionally high stress intensity factor (which is a measure of toughness) of the PU resin has a positive effect on the fatigue behavior under load and, hence ideal for car leaf springs that are constantly subject to dynamic loading. Risks of local overheating and resulting shrinkage (in the RTM process) is reduced as the PU resin generates less heat overall during curing than epoxy resins. Hence, even thick components with several layers of fiber/fabric, cure fast [Plastics Today].

LONGER BLADES – MORE MW

wind mills (sept 29)

The quest for monster 100-meter wind turbine blades required to make offshore wind compete with fossil fuels continues. Wind turbines account for around 33% of the cost of offshore wind farms – installation costs are the major expense. Use of larger turbines reduces the number of wind turbines needed, thereby decreasing installation and maintenance costs. However, as turbines get bigger, the loads on the blades and hence their weight, goes up exponentially. Traditional blade manufacture involves forms as long as the blades. Blade Dynamics, partly owned by American Superconductor, has developed proprietary ways to make 12-20 meter sections of carbon fiber (CF) blades and then splicing them seamlessly, thereby eliminating the need for large forms [MIT Technology Review]. Though more expensive than glass fiber (GF) blades, CF blades are lighter. By making the blade in smaller sections, its possible to make more precise aerodynamic structures, thereby improving performance. It is also possible to put longer, lighter (CF) blades on existing wind turbine designs. Longer blades gather more wind, allowing the turbines to generate more power at lower wind speeds, increasing revenue in the process. Other advantages of lighter blades include feasibility to design new wind turbines that have lighter, less expensive components such as drive shaft, tower and foundation.

Carbon or glass fiber for longer blades and higher MW turbines for offshore ? The battle rages. As of now, CF has the definite edge.

NOVELTY NEVER WEARS OFF

529910_plane_windows

When it comes to lightweighting technologies, the aerospace sector is not far behind automotive. Polycarbonate (PC) and its co-polymers are enabling processors to produce parts with thinner walls that help reduce interior weight of an aircraft. Parts can be molded or extruded with very thin walls (down to 1.5 mm) while complying with leading flame, smoke and toxicity (FST) standards with halogen-free flame retardants to support sustainability [Plastics Today]. SABIC‘s new range of PC co-polymers have special features called the shear-thinning effect and are also said to meet tough commercial toxicity standards from Boeing and Airbus. The products flow slowly in low shear conditions (extrusion) and flow quickly in high-shear processes (injection molding).

 SHIFTING TRENDS

853262_trucks

If you thought that single piece thermosetting SMC was the prerogative of bumpers for trucks and heavy goods vehicles, here is  the not-so-surprising news….. future trend is for such bumpers to be manufactured on a modular basis from several components such as polyamide and polyester injection molded thermoplastic compounds. Headlamp supports would be from highly reinforced polyamide 6 with 60% glass fiber. The supports hold the headlamps and the light strips. They not only have to bear their weight (around 8.5 kgs per headlight), but must also withstand very high static and dynamic loads – hence must not fracture even under severe dynamic acceleration of up to 10 times the force of gravity. The U-shaped center front-step which is connected to the headlamp supports is injection molded from a PET+PBT blend reinforced with 20% glass fiber. The part is provided with numerous ribs and designed for a static load of 2kN as it has to bear the weight of the driver as he climbs on to the front to clean the wind screen. The thermoplastic blend has adequate flexural stiffness that renders steel reinforcement redundant [Plastics Today].

The technological advances in thermoplastics and blends thereof in the past decade have been phenomenal – especially in the automotive sector, where they were considered taboo for load-bearing applications not long ago.

THERMOPLASTICS FLYING HIGH

343548_sit_back_and_relax

Component integrity is critical to keeping aircraft in service to minimize maintenance and downtime. Brackets for use in aircraft structural applications have now been developed in carbon fiber reinforced polyether ether ketone (PEEK). The brackets weigh 45 grams each and used in primary and secondary structural applications in commercial and military aircraft. Besides a 70% weight saving compared to metals (stainless steel, aluminum and titanium), other benefits include faster part manufacturing cycle times (in minutes) compared to thermosets ( in hours). At current fuel prices, a 1 kg reduction in weight from a short-range aircraft can save airlines up to $ 100 in fuel costs. If composites brackets can remove 100 kgs of weight, an airline with 500 short-range aircraft could save up to $ 5 million annually by making the switch from traditional metal [Plastics Today]. Apart from a five-fold higher fatigue strength, added advantages over metal are vibration and noise dampening improvements.

FUTURE  SHOCK !

1327682_power_5

The shale boom in the U.S. has left the world’s largest economy awash in the power source which is used by utilities to generate nearly 25% of U.S. electricity [CNBC]. Utilities have traditionally used coal to generate electricity. But the abundance of relatively inexpensive natural gas has given power operators an incentive to shift away from coal. Energy markets continue to converge bringing the crude oil/natural gas ratio to 20:1 – the tightest ratio since January 2011. Even a year back, it was around 51:1 [Plastics Today]. Lyondell Basell’s recent announcement of expansion plans for 1.2 billion pounds of new PE capacity in North America has made it the sixth PE maker to announce plans for new PE capacity  joining Chevron, Nova, Formosa, Dow and Exxon Mobil – such has been the impact of the availability of abundant natural gas from shale deposits in the U.S. The cumulative increase in new PE capacity by the six companies is greater than 6 billion pounds [Plastics News].

Little wonder that PE is experiencing a surge in growth and rivaling PP in several applications.

An insert molding process employing a co-polyamide adhesion promoter to bond aluminum tubing  with glass fiber reinforced polyamide 6 is being used by Mercedes Benz in several of its vehicles to derive weight savings [Plastics Today]. The aluminum tubing connects both A-pillars together and supports the entire dashboard – from the steering wheel to the glove compartment. The co-polyamide adhesion promoter covers the aluminum tubing and joins the composite holding brackets of the individual components to the tubing by an injection molding process based on melt-bonding. Component weight is drastically reduced by 20% compared to traditional joining methods such as welding/screwing together with metal connecting plates.

 SWAP – GLASS TO POLYCARBONATE

60461_car_4

This one for the road…. Volkswagen is debuting a two-component injection molded, plasma coated polycarbonate side windows that provides a 33% weight saving over traditional glass windows as well as scratch resistance. The glazing provides the same visual characteristics as standard glass windows [Plastics News].

Per Bloomberg New Energy Finance, global investment in clean energy in Q1 2013 was lower than at any other quarter since 2009. From Q4 2012, global investment in clean energy plummeted 38%. In the U.S., Q1 2013 has seen a 54% drop (possibly due to late announcement of the PTC extension); Europe a 25% drop and China 15% [Oil and Energy Insider].

The grapevine on ending fuel subsidies to level the playing field could be one of the reasons. A wait and watch approach is perhaps the best recourse to green energy crusaders.

INVESTMENT PLANS

126043_business_3

A cursory reading of this post would obviously show the emphasis on automotive, aerospace and wind energy sectors and not without reason. Currently, these market segments are the  principal growth drivers for composites almost globally, with other sectors also pitching in a measured way depending on the region. The Middle East had airline traffic gain of 15.6% year-over-year, Latin America had traffic gain of 11.8%, Asia Pacific 5.4%, Europe 3.7% and North America 2.4% – an overall growth reflecting business confidence [Forbes]. The fact that China’s growth is poised to be driven by domestic demand (rather than exports) is a welcome change and augurs well for the industry. The U.S. automotive sector appears to be on a roll with CFRP being a game changer, though the last minute renewal of the PTC for wind energy could slow down the sector in the first half, after a record 2012 performance (in terms of GW installed). Advantageous energy costs (natural gas and electricity futures) should be beneficial to glass & carbon fiber expansion plans and/or greenfield plants that are on the anvil.

2013 could well serve as the (re) launch pad for the composites industry in North America to take off yet again (after a tepid 2012) resulting in greater gains from 2014 & aided by continued focus on material substitution.The time to reap the benefits of attractive energy costs is NOW !

Tailpiece : Global consumer confidence rose in Q1 2013 – confidence improved in 60% markets globally compared to only 33% in Q4 2012, with marked increase in sentiment in the U.S., Japan and Northern Europe [Trade Arabia].

While this may invoke a smile in many, the Cassandras would probably still sulk.

Till the next post,

Cheers,

S. Sundaram

EmailSS@essjaycomposites.com

Twitter@essjaycomposite

Website: www.essjaycomposites.com

Co-opetition : the new mantra for business growth & survival

Hello everyone,

Here we go with the first post of Q2, 2013………

CHARTING OWN COURSE

1029949_-world_background_v-

In a highly symbolic show of unity in Durban in late March; leaders of Brazil, Russia, India, China, South Africa (collectively referred to as the BRICS) agreed to create a development bank to create funding for infrastructure projects in a potentially historic challenge to western-dominated financial institutions [The Guardian]. While various technical details need to be hammered out, the BRICS bank could potentially rival the World Bank. Other developing countries are  eventually expected to be invited to join the bank. Per a recent column in the Business Standard, ” the richest nations can stew about this turn of events, as those on the periphery of the world economic system start seeing themselves as the core. Or developed countries can look in the mirror, and consider how their actions have helped accelerate the shift.”

The concept may be considered outlandish and fraught with consensus on minute details that have yet to be discussed…..but the seed has been sown. Lets wait and watch as to how it slowly fructifies.

TAPERING OFF ?

1157866_economy_crisis_2

The International Monetary Fund [IMF] has jumped into the climate change debate and globally, is against government energy subsidies. Its latest report calls for an end to energy subsidies across the board (about $1.9 trillion annually around the world) OR for these subsidies to be offset with taxes that could pay for expensive social programs [Oil and Energy Insider]. Essentially, the IMF is subscribing to the idea of a “sin tax” on fossil fuels to reduce consumption and raise money for other sectors.

Coming at a time when many nations are toying with the idea of a gradual cutback in subsidies in the coming years, the IMF’s school of thought should not be surprising.

NOD TO COMPOSITES

1101636_yes_or_no

Admittedly, the building and construction sector has had a conservative approach in use of composites over the years. The American Composites Manufacturers Association [ACMA] actively initiated work several years back to modify the International Building Code in an effort to create greater awareness on environmental sustainability of composites. This culminated in the International Code Council [ICC] voting in 2009 to allow use of composite materials for both interior and exterior wall applications as reflected in the code’s latest edition : IBC, Chapter 26,” Plastic ” and Sub-section 12 ,” Fiber reinforced Polymer” [Composites World]. While Europeans rely on the Eurocode; in the Middle East and Asia, codes tend to be a mix of U.S. and British standards. The fact that designers are beginning to actively interact with architects at the drawing board stage itself to highlight the advantages of composites in reducing building dead load/smaller foundation & manageable seismic design and the resulting favorable life-cycle analyses; are definite pointers to the growing acceptance of composites, albeit slowly [Reinforced Plastics].

Just goes to prove that architects’ minds need not necessarily be set like concrete… with the right approach, they can be flexible.

UPPING THE ANTE

133418_chemical_stuff_5

The addition of liquid epoxidized natural rubber to epoxy resin matrix in an E-glass fiber reinforced composites threw up interesting results on the resultant mechanical properties at varying glass fiber loadings. It was observed that the presence of liquid epoxidized natural rubber improved the flexural strength & modulus, tensile strength & Young’s modulus and impact strength (up to a certain % loading of glass fiber by weight)  due to the plasticizing effect of the rubber particles in the matrix. Thermogravimetric analysis (TGA) revealed the thermal stability of the composites, while the scanning electron microscopy(SEM) revealed a heterogeneous dispersed phase of morphology. Adhesion was reported to be poor if untreated glass fiber was used, which is to be expected [Sciencia].

Would multiaxial fabrics have been a runaway success without German machines of the likes of LIBA and Karl Mayer ? An university in Dresden, Germany [TU Dresden] has partnered Karl Mayer to produce concrete reinforcement from carbon fiber heavy tows using a specially modified multiaxial warp knitting machine. Each heavy tow consisting of 50,000 individual filaments (50K) can reportedly reduce material costs for a higher fiber volume fraction in each textile concrete-reinforcing layer; representing a considerable economic advantage over alkali-resistant glass fibers and conventional CF with 12,000 individual filaments (12K) that are currently used for maintaining and restoring buildings [Innovation in Textiles]. The key lay in delivering the heavy CF tows in the main reinforcing warp direction without damage and with precise positioning of the fibers through gentle warp yarn brakes and combined warp yarn/holding down sinkers for placing the warp yarns accurately between the needles. The warp yarns were fixed without being pierced and the weft yarns were fixed in a reduced width during the warp knitting process. Both yarn systems lie completely parallel and stretched in the reinforcing textiles, thereby causing a positive effect on the strain characteristics. Mechanical properties were improved by integrating online coating and drying process. Machine running speeds of up to 560 rpm were achieved thereby meeting productivity requirements.

When it comes to sturdy machinery innovation; the Germans have few peers, with no perceived slight on other nations.

JOINING THE BANDWAGON

794074_wind_turbines_2

Clean wind power is becoming infectious, with Japan  announcing ambitious plans that are not idle rhetoric. Japan aims to triple its supply capacity to 7.5 GW by developing transmission grids in Hokkaido and Tohoku regions. Wind power generation costs are estimated at 10 yen/KWh – almost the same as thermal power generation by liquefied natural gas [Asiaone]. In addition, tapping the wind potential in other regions such as Hokuriku, Sanin and Kyushu regions could increase the nation’s capacity to 14.7 GW….which is a six-fold increase over current levels. The Japanese have the enviable reputation of walking the talk….the wind energy sector should take their plans seriously [Renewable Energy World].

Germany’s path-breaking clean energy transition has resulted in onshore wind power (30+GW) generating nearly 40% of the country’s electricity production, roughly equal to 40 nuclear reactors. According to the Department of Climate and Energy Change, U.K.’s offshore wind power rose to 7.5 TWh in 2012, up from 5.1 TWh in 2011 and driven mainly by capacity addition [Bloomberg].

The wind energy sector definitely appears to be on a tear in many countries in spite of several Governments keeping the industry on tenterhooks till the last minute when it comes to extension of tax credits (aka, incentives) – India being the latest example. The battle for supremacy seems to be more related to onshore vs. offshore.

PLASTICS TO THE FORE

260105_engine

Daimler is installing the world’s first plastic engine support for a six-cylinder diesel engine (in the new GL class) in lieu of aluminum resulting in improved acoustical properties, better thermal insulating characteristics, higher load bearing capacity  and a 30% weight reduction. The part, which supports the engine with the aid of mounts is injection molded from a highly reinforced specialty polyamide. Engine supports are crucial as they have to support both the permanent load (engine’s weight) whilst simultaneously absorbing the engine’s torque and high bending moment + low tendency to creep [Plastics Today]. The plastic part also passed the repair crash (that replicates smaller crashes) and the massive offset crash (head-on crash) with flying colors.

A dent to aluminum ?

 LOWERING CYCLE TIME

1131445_red_check_sign_in_3d

A reduction in molding time of a large component by a factor of 10 ? Welcome to ESTRIM (Epoxy Structural Reaction Injection Molding) – a new process that takes advantage of new fast reacting epoxy formulations targeting lightweight structural automotive parts and sports applications [Molding blog]. Cycle times for large parts have a drastic reduction from 30 minutes for conventional RTM to 3 minutes with ESTRIM. The system includes a series of integrated products – carbon fiber reinforcement handling systems, dedicated preformers, high-pressure dosing units for epoxies, multi-component mixing heads with different injection and distribution methods, polymerization presses and relevant handling systems of preforms and molded parts. The icing on the cake…… ability to incorporate recycled carbon fiber from aerospace and other applications.

PARADIGM SHIFTS

1362714_tubes

Per European Plastics News, the pipe segment will be the principal growth driver for HDPE through 2019, riding on strong demand from Asia Pacific (growth rate of 4.4%). Eastern Europe, Middle East and South America will also generate strong growth rates for HDPE; while North America and Western Europe will witness slower growth rate [Plastics News].

In spite of higher costs being seen in PP, global growth rates are expected to increase from under 4% in 2007-12 to ~5% in 2012-17. Though the growth in North America is expected to remain low, the region could add new PP capacity towards the end of the 2012-17 period through the propane dehydrogenation route. Thanks to shale gas, at least six world-scale ethylene crackers are planned for North America that could boost ethylene capacity by around 33% resulting in exports as PE supply would exceed demand in the region.

The extent of impact created by the shale gas revolution in the U.S has caught even industry experts by surprise.

A new acrylic thermoplastic resin that can be processed on thermoset equipment for RTM and infusion, coupled with the ability to be reinforced with continuous glass or carbon fibers has been recently introduced. Cycle times and mechanical properties are similar to those for conventional thermosets such as unsaturated polyester, vinyl ester and epoxy resins. The thermoplastic structures are suited to thermoforming, welding and recycling. Parts consolidation through use of adhesives reportedly enhances mechanical strength. The resin is styrene-free and can be used with peroxide initiators. The traditional gel coat layer (used in thermoset parts) can be dispensed with and is replaced with a thermoplastic multi-layer sheet such as ABS/acrylic which is thermoformed in the mold prior to laying the reinforcing fabric [Plastics News].

NA – MAKING THE DIFFERENCE

948520_sine

Designers realize the significance of bending rigidity of laminated fabrics (glass/carbon/aramid) and its relevance to the position of the neutral axis, especially in load bearing applications. In a recent study, theoretically derived equations were proposed to obtain the position of the neutral axis and to predict bending rigidity of laminated fabrics. Tensile properties, bending rigidities and thicknesses of samples were measured and used to investigate the validity of the theory. The positions of the neutral axes for the face fabrics were obtained and they were not close to the centroid of the fabric. The calculated bending rigidities of laminated fabrics using the obtained positions of neutral axes were found to be more in line with the experimental ones than the results by the method without considering the position of neutral axis. The conclusion was that the bending rigidity of a laminated fabric can be predicted more precisely when considering the position of neutral axis [Sciencia].

TALL, TALLER…

1155551_skyscraper

In late February, the world’s tallest hotel [JW Marriott Marquis] opened its doors to the public at Dubai. Soaring at 355 meters, the building is just 26 meters shorter than New York City’s famous Empire State Building and boasts of 7,500 square meters of indoor and outdoor event space [Gulf News].

A French architect is hoping to build the Middle East’s first skyscraper covered in trees and pot plants in Dubai. Dubbed the “Flower Tower “, the concept would create the impression that residents are surrounded by forest – bringing greenery (on its facade) to apartments tens of meters from the ground. Dubai is aiming to cover one-quarter of the emirate – 38,000 hectares – in green space by 2025 [Arabian Business].

When it comes to buildings, Dubai sets its own standards of excellence (and records) and goes about achieving the same sans fanfare. Recall the Burj Khalifa ?

Speaking of hotels, its turning out to being a game of one-upmanship with China announcing designing of the Lotus Hotel….. a hotel that floats on sand ! Hidden in the Gobi desert, the green hotel of the future does away with bricks and concrete and, instead, will use materials and techniques to support low carbon construction. An ingenious skeleton distributes the hotel’s weight through its walls, rather than directly on to its floors; while, underneath, a system of containers allows the sand to move under and around the hotel while it stays in a relatively fixed position [Clean Technica].

Allowing imagination to run riot ? 

This blog’s readership has now reached the milestone of 100 countries spanning all continents.

Its a small world, eh ?

Till the next post,

Cheers,

S. Sundaram

EmailSS@essjaycomposites.com

Twitter@essjaycomposite

Website: www.essjaycomposites.com

Paradigm shifts – flexible approach in adaption is the key

Hello all,

At the first G20 Finance Ministers & Central Banks Governors’ meeting in Moscow in mid-February, delegates “agreed” that tail risks to the global economy have receded, coupled with improvement in financial market conditions. The caveat was the recognition that important risks remain and global growth was still too weak – a statement that is all too obvious and a stark reality !

UK’s WOES

1159573_money

Fears of a currency war were stoked at the G20 summit and the currency market was thrown into turmoil that same week with the G7 members issuing a joint statement warning against using domestic policy to target currencies. Following Moody’s Investor Services stripping of UK’s Triple-A rating in late February, the pound was in for further trouble in the beginning of March as it tumbled and fell below a key level of the U.S. dollar following a weak Purchasing Manager’s Index (PMI) for the manufacturing sector, leading to speculation of the likelihood of further Quantitative Easing (QE) by the Bank of England [CNBC].

An open-ended QE in the footsteps of the U.S. and Japan ? With the euro on an eight-month high against the  greenback, has the race to the bottom begun ?

CO-EXISTENCE – BENEFICIAL

1318580_modern_hotel_facade

GFRP composite profiles are evolving as energy-efficient facade panels for buildings. Existing facade panels, made of aluminum profiles with embedded polyamide thermal breaks have thick wall constructions and meet only the lowest limits of building regulations. The new GFRP pultruded composite panels with vinyl ester resin replace the polyamide thermal breaks and part of the aluminum. It has the requisite aesthetics, displays lower thermal conductivity and better insulation, whilst simultaneously maintaining mechanical properties in view of the aluminum/composite combination [Pipe and Profile Extrusion].

Competing materials can be complementary.. that’s the name of the technology game.

Manufacturing of thermoplastic composites based on textile preforms made from hybrid yarns is well suited for the production of FRP in medium and large scale production runs. The consolidation of thermoplastic FRP is currently complicated by the high viscosity of molten material. Woven multilayered and Z – reinforced non-crimped fiber preforms can facilitate FRP withstand three-dimensional loading and impact stress [Sciencia]. Such preforms with Z-directional reinforcement improve the FRP delamination behavior and out-of-plane characteristics. This concept holds immense potential in a wide range of composite applications.

Z may be the last alphabet……but allow the designers’ imagination to run riot on its geometry and possibilities are endless for improvement in mechanical properties of composites. Last, but not the least (effective) ?

NOVEL SANDWICH CONCEPT

351572_western_diesel

A new polyurethane based glass fiber sandwich material has been developed for an enclosure that houses a diesel train’s engine, thereby saving weight and cost over its steel and aluminum counterpart. The enclosure, normally located underneath the passenger compartment must withstand high mechanical loads to support all that weight as well as protect the engine from impact apart from also providing chemical resistance to prevent oil leaks and conformance to strict European fire protection requirements [Design News]. Parts are made with a honeycomb core and manufactured  directly in their final complex three-dimensional shape using a much faster combined spray and press process. The new material’s honeycomb core is covered on its top and bottom with glass fiber mats, then sprayed with polyurethane containing a flame retardant and (optionally) chopped glass fibers. The component is then placed in a compression mold while still moist and pressed at  a temperature of 130°C. The polyurethane foams and binds the components together. The parts can be removed from the mold after two minutes and deburred [Bayer Material Science]. Other potential applications for the material are roof segments, side flaps and wind deflectors for automobiles and commercial applications.

A new form of sandwich construction that breaks away from traditional glass fiber reinforced epoxy/polyester resin facings and rigid foam cores – technological breakthrough at its best.

MORE ECONOMICAL THAN FOSSIL FUEL

859561_mill

Is wind power competitive with fossil fuels ? This has been a raging topic awhile and technological advances resulting in bigger, smarter wind turbines are taking the wind out of naysayers’ sails. Lending credence, aside other factors was the latest research from Bloomberg New Energy Finance (in February) that electricity could now be supplied from a new wind farm in Australia at AUS$ 80/Mwh compared to $143 for a new coal plant or $ 116 from a new baseload natural gas plant [Think Progress]. Both EWEA and GWEC concur that onshore wind power is competitive once all costs that affect traditional energy sources – such as fuel and CO2 costs, effects on environment and health are considered. Factoring CO2 costs alone, if a cost of € 30 per tonne of CO2 emitted was applied to power produced, onshore wind energy would be the cheapest source of new power generation in Europe [Renewable Energy World]. The approach is to increase the swept area by 23-37% (by increasing rotor diameter) with a view to increasing energy yields by up to 31%. Increasing the size of wind turbine blades  and making the tower taller, allow a turbine to capture more wind, especially at low speeds.

Longer blades translate into more glass/carbon fiber….the whoosh sound transforms to music to fiber producers as they sharpen their pencils to draft new plans to augment capacity in due course !

STRENGTH IN THE SEAM

747813_thread

Technical textiles (fabrics) are gaining in importance globally and their uses are becoming even more diverse. Sewing threads are hence challenged not only to sew material together, but to produce a seam that will not breakdown in the extreme environments that fabrics encounter in service. For sewing situations requiring heat resistance between 555°C  to 815°C, glass fiber threads are ideal. For higher temperatures, these may be twisted with stainless steel [Innovation in Textiles]. For lubrication, they can be coated with PTFE. For high temperature applications, aramid/steel sewing threads with a steel core is recommended. For certain high performance thermal engineering, sports surfaces and filtration, a 100% stainless steel sewing thread is available. Carbon fiber is also used for specific end uses. Sewing threads made from 70% alumina and 30% silica have a melting point of 1880°C and are useable up to 1300-1400°C. Very fine continuous filament pure fused silica is used to produce one of the strongest and most temperature and chemically resistant threads. A PTFE encapsulation enhances the thread resistance to build-up of contaminants and repeals attack by most acids and alkalis, whilst improving handling characteristics and abrasion resistance. The thread will not support combustion and will resist temperatures up to 1093°C.

A case of “horses for courses” in choice of appropriate sewing threads for (textile) fabrics/applications ?

AN ENGLISH HI-TECH INNOVATION

1058436_news

We receive news from newspapers, the web, TV, phones. Welcome to receiving news on Wi-Fi ready GFRP trash bins that have been introduced in the city of London under a 21-year contract with the authority ! The newspaper recycling bin which doubles as an open-air information system is made of glass fiber with toughened glass at either end and designed to withstand extreme pressures. The plastic surround is made from recycled materials and has an LCD screen on which news, weather and sports reports can be shown [Forced Green]. The pods can receive feeds within 3 minutes of being advised of a breaking news event. Its not just a place for trash – there are separated areas for paper and cans. Nearly 100 of the “hi-tech” bins have been installed in London, with a similar number planned in Wall Street (New York) where one has already been installed. Hong Kong and Singapore are next in the list of proposed installations.

The English obviously have a flair for innovation… this one should be as famous as their pubs, breakfast and tea !

Breaking news…. GE has snatched the wind installation crown from Vestas as it installed more wind turbine MW capacity by a significant margin. Vestas had been the numero uno since 2000 [Financial Times]. GE breezed past Vestas, riding on the >8GW installed in Q4, 2012 in the U.S. of the ultimate 13GW. Recall how Toyota recently regained the # 1 spot from GM in the automotive sector.

Just goes to show that the top spot in any sector is always up for grabs in a competitive world. Uneasy lies the head that wears the crown ?

POLYPROPYLENE – A LIFELINE ?

573525_oil_refinery

Polypropylene (PP) prices jumped another 6 cents/lb in February in North America – a 22% increase since the New Year [Plastics News]. Propylene availability continued to be the main reason for the steep hike in PP price. The increasing use of natural gas based ethane as feedstock (in lieu of conventional naphtha) has diminished propylene supply. This trend is likely to continue at least till 2015 when the propane dehydrogenation route for propylene becomes a commercial reality through two plants proposed to be constructed. North American PP is expected to lose 12% of its demand to HDPE and polystyrene.

What does this portend for LFRT that uses PP in automotive applications ?

The European Union’s end-of-life vehicle (ELV) requirements is pushing European automakers to adopt revolutionary materials. SABIC has developed a post-industrial recycled (PIR) grade of a blend of polyamide (PA) and  modified polyphenyl ether(PPE) polymers for the bumpers of Renault’s 2013 Clio IV model that can withstand the temperatures used in automotive paint lines whilst also demonstrating strong chemical and impact resistance. The new PIR grade which is sourced from body panels, meets the required automotive quality and performance standards & reduces greenhouse gas (GHG) emissions by 47% over the life cycle of the fender, compared to steel.

The principal reasons for success in increasing use of polymers and composites in automotive applications stems from a single-minded approach in adhering to regional regulations in recycling, environmental norms whilst conforming to safety and mechanical properties of various components.

HANDS ON, HASSLE FREE

1412140_cafe

If you are an iPhone buff + a tea/coffee addict (and there are several in this category!), brace yourself for a novel invention. A Netherlands firm has designed and conceptualized the UpperCup (aka, a coffee holder) – a device that enables users to text/sms confidently with both hands without having to worry about the hot beverage picked up from Starbucks! The user just slips the hot beverage in the holder which is housed along with the iPhone case and does not have to scramble to search for a place to keep the cup down, before texting [Khaleej Times]. The product is expected to be a runaway success. Caution has to be exercised when taking incoming calls – the hot coffee can spill on the phone or in your ear!

Steve Jobs must be having the last laugh at this invention that his iPhone has created. Is Samsung listening ?

ALUMINUM – MIDDLE EAST SHIFT

509925_sheet_metal_earth

World aluminum demand is strong and increasing at 6% per annum. Currently at 40 million tonnes, the demand is poised to touch 70 million tonnes by 2020. Four of the top ten aluminum producers in the world are from West Asia (Gulf region) and will account for 15 % of the world’s production by 2014. Gulf production is expected to increase to five million tonnes by 2014 [Khaleej Times]. North American and European regions are  curtailing aluminum smelter capacity due to increasing cost of operations, driven by higher energy cost.

Following the footsteps of gold, copper the red metal treaded an eight-week low in late February and is at risk of testing the October 2011 lows [CNBC]. With about 40 lbs of copper used in every car, global auto sales trends could be important in gauging where copper prices are headed. The world is watching China and the U.S. closely for trends.

CARBON FIBER – ZOOMING AHEAD

837158_spotr_car

Tokyo University, in collaboration with a group of leading Japanese corporations, has developed two types of low cost, high performance CFRTP prepregs for the mass production of ultra-lightweight cars that can be manufactured with fast molding cycles and are recyclable. The first product is a  discontinuous CF reinforced isotropic prepreg suitable for complex parts and the second, a continuous CF reinforced prepreg for primary structure parts such as frames. The matrix resin is primarily polypropylene (PP), though polyamide (PA) can also be used. The specially surface treated CF and modified resins provide high strength, energy absorption, formability and recyclability. Molding cycle time is under a minute. The CFRTP prepregs reportedly reduce vehicle weight by 40-70%. Their most notable feature is the ductile fracture behavior without significant delamination [Plastics Today]. It is estimated that 100kgs of CFRTP parts will equip 10 million passenger cars by 2030, thereby resulting in a potential CF demand of 1 million tonnes.

Current and potential carbon fiber wannabe manufacturers would be salivating at the prospects, though it is still a decade + away.

GARBAGE-FREE WORLD

1026072_recycle_icon_glossy

In my February post, I wrote about the new generation bio-polymers that would result in landfills not being an option. A world without landfills ? Not an Utopian concept, as San Francisco could possibly lead the way in becoming the first zero-waste city in the U.S. A waste-management company is working to ensure that all discarded items will be successfully recycled, reused or composted thereby rendering obsolete the need for landfills [CNBC]. The plan…soda cans to be crushed into huge blocks and sold to make more soda cans, used construction materials to be reworked and sent to new job sites and previous night’s dinner to be composted and turned into a soil nutrient that can be sold to farmers to enhance crop growth in vineyards and elsewhere.

It’s smarter to put waste back into commerce – that is the company’s motto. The future of garbage is …… no garbage, making the world a cleaner, better living place in the long run.

Tailpiece…. is Coca-Cola developing a beauty drink with a French drugmaker, that reportedly can strengthen hair, improve skin and help with weight loss [The Daily Meal] ? Per the Wall Street Journal, the drink will be a blend of mineral water, fruit juice and nutrition additives.

Readers may want to research this topic further ?

Till the next post,

Cheers,

S. Sundaram

EmailSS@essjaycomposites.com

Twitter@essjaycomposite

Website: www.essjaycomposites.com

Northward trend in prices and demand….. the 2013 scenario

Hello everyone,

Welcome to another post……..

MONETARY RESILIENCE

1340999_world_paper_money

At the World Economic Forum meeting in Davos last month, participants were informed that the global economy is likely to face fewer headwinds in 2013 (compared to 2012) with prospects of a modest 3.5% GDP growth. Such a forecast from the International Monetary Fund which, in the same breath, described the recovery as fragile and timid, was indeed positive news. Little wonder that the theme of the WEF meet was aptly titled “Resilient Dynamism”. The outlook for emerging markets is higher at 5.5% compared to that for the developed nations at 1.5%. Riding on growing domestic consumption, China is expected to grow at 8%.

More than a faint glimmer of hope ? You bet.

 STOCKS & SHARES

1388612_market_movements_2

The stock market has obviously been on a tear with a raft of positive economic news in the U.S. driving the Dow Jones Industrial Average to a five-year high at the end of last week [Wall Street Journal]. Corporate earnings have been stronger than expected, the domestic economy is showing signs of improving and the construction sector is on the resurgence. The recent bullishness has also spread overseas with Japan’s Nikkei Average stringing together 12 consecutive weeks of gains and now at its highest level since April 2010. The contraction of manufacturing in the eurozone slowed down last month amid signs that the worst may be over [BBC News].

Events lending credence to the “what goes down must come up” adage ?

German machine builder Krauss Maffei has delivered machinery to produce the world’s largest long fiber  two-piece roof made of polyurethane by the RIM process for agricultural machinery that includes a long-lasting in-mold painting to boot [Plastics Today]. The superior mechanical properties and premium quality surface finish for ultra-large lightweight components could find applications in the automotive and commercial vehicle industry. Cycle time for the double shuttle mold carrier system can be around 9 to 10 min. for one of the two elements of the roof, with the ability of the upper plate of the top mold to be swiveled out by 90 degrees when the mold carrier is completely opened.

Layer-wise method is a new approach for predicting the tensile strength of discontinuous fiber reinforced composites with arbitrary fiber orientation angles. This technique assumes the discontinuous fiber-reinforced composites are identical to laminates that are composed of UD plies and have the same distribution of fiber angles over the entire laminate. The effect of fiber length on tensile strength and failure mode was studied on discontinuous carbon fiber reinforced polypropylene composites – the simulated results agreed well with those of  experiments [Sciencia]. An analytical model that was evolved based on micro-mechanics now has the capability to correctly evaluate the strength and fracture mode as effectively as the layer-wise method.

OFFSHORE WIND POWER – UNSTOPPABLE

wind mills (sept 29)

The jury is out on wind energy stats for 2012. Offshore wind power installations in Europe rose by 33% in 2012: 1,166MW versus 874MW in 2011, according to the European Wind Energy Association. This is expected to increase by another 20% in 2013 as developers build bigger farms in deeper waters. EWEA forecasts grid connections to total 1,400MW this year and 1,900MW in 2014. The U.K. led installations in 2012 with 234 of the 293 new turbines, totalling 854MW [Bloomberg]. A total of 10 European nations now have 1,662 wind turbines connected in 55 wind farms at sea totaling 4,995MW, with the U.K. accounting for 59% followed by Denmark with 18%. The UK. wants to cut the cost of wind from $210 per MWh currently to $161 by 2020 in its quest to install a staggering 18,000MW offshore by the end of the decade [Fast Coexist]. Companies are developing blades 100 meters in length and carbon fiber seems to be the current option. Onshore wind energy in the U.S. led the way in renewable energy sources, with 164 new units totaling 10,689MW in 2012 in new generating capacity [North American Windpower]. Wind pulled ahead of natural gas which installed 8,746 MW of new capacity according to the Federal Energy Regulatory Authority [Think Progress]. At a tower height of 170 meters, the structure will be 270 meters tall.

Big is beautiful ? Nay, awesome in the offshore wind energy context ! No wonder, carbon fiber producers are rubbing their hands in glee at the potential.

PRICE SALVATION ?

1239216_graph_2

Increase in styrene monomer price resulted in major resin producers announcing price hikes of unsaturated polyester and vinyl ester resin in January. Polypropylene prices increased by $0.15/lb in January in North America with further increase likely this month [Plastics Today]. Polycarbonate prices climbed by 3% while nylon declined by the same margin [Plastics News].

PLATINUM- THE NEW GOLD

1335487_check-box

Is platinum likely to have the edge over gold in 2013 ? Very likely, as currently both are trading around $1,680/ounce. Rising labor and electricity costs have resulted in closure of several mines in South Africa ( the biggest producer of platinum) leading to supply constraints. The prediction is that platinum will breach the $2,000 mark this year, ahead of gold [CNBC]. Glass fiber producers who are planning to expand existing capacity and/or set up greenfield plants would be well aware of the need to factor this aspect when they lease/purchase the precious metal.

VYING  FOR A SHARE OF THE PIE

718576_pipes

Large diameter pipe demand in the U.S. is expected to rise 6.2% annually through 2016 from the repair and replacement of wastewater infrastructure. Both storm and sanitary sewers will continue to drive the demand for large diameter pipes for water and wastewater, accounting for one half of total demand [Plastics Today]. The need to expand oil and gas transmission lines, especially near shale plays will spur growth, according to a Freedonia Group report. While steel and HDPE remain tied at 31% apiece as the most widely used material; corrugated HDPE is expected to replace concrete pipe in many drainage applications, primarily due to ease of installation & lightweight. HDPE is projected to grow annually at 6.9 % and PVC 5.7%, through 2016. Large diameter pipes are in big demand in Europe and South America as well. Weholite HDPE pipes have a unique profiled-wall structure that enable fabrication of pipes up to 3,500mm diameter. The pipe’s smooth surface enhances flow rates compared to steel or concrete.

A leading German automotive supplier ZF who is already producing automotive brake pedal systems in glass fiber reinforced thermoplastics is currently developing a prototype of a long glass fiber reinforced transverse leaf spring within an axle system. The flexibility inherent within the plastic in the composite leaf spring eliminates the need for metal coil springs, thereby reducing complexity within the axle, whilst simultaneously reducing weight by 12-15% [Plastics News]. The company is also reported to be developing a lightweight suspension strut wheel carrier that would use a hybrid mix of materials, including plastics, which would be half the weight of a traditional steel and aluminum strut.

ALWAYS A NEW ANGLE

224405_iron_1

There is continuing work on recovery of glass fibers from GFRP sheets containing  styrene cross-linked unsaturated polyester resin, calcium carbonate (as filler) and glass fibers. This time around, pyrolysis was carried out in a helium and steam atmosphere to recover glass fibers and valuable organic pyrolysis products. Glass fibers were separated from calcium carbonate and calcium oxide by dissolving calcium salts in hydrochloric acid. Residual organic material was burnt later. Best results were obtained at a pyrolysis temperature of 600C and 700C, resulting in a large liquid fraction rich in styrene, leaving little organic residue on the glass fibers. Degradation of the polymer matrix was incomplete at 500C. At 900C the glass fibers were destroyed in the presence of calcium oxide, leaving calcium silicate as a product [Sciencia].

Would there be a SMC/BMC/DMC consortium in the making, to pool resources to render this a commercial success? Time will tell.

The global thermoset resins market is forecast to reach 95.5 million tons by 2016, primarily supported by the unsaturated polyesters (UP), phenol formaldehyde (PF) and epoxy/polyepoxide resin market segments [Plastixanz]. UP and PF account for 30% of the thermoset resins market. Europe is expected to be the fastest growing region for epoxy/polyepoxides with a CAGR of 12.5% followed by the Americas at 10.2%.

 NEXT GENERATION BIOPLASTICS

1024889_yellow_field

Drop-ins are materials produced from monomer building blocks from biomass feedstocks that can directly replace conventional petroleum-based products. The carbon content of plastics produced on the basis of these biomonomers originates from renewable sources, such as plants or biowaste. So what does this imply ? Potentially, all grades of PE, PP, PVC can currently be made via biobased routes as also polyamides and polyesters [Plastics Today]. The feedstocks used to produce bioplastics currently are from food crops – mainly starch or sugar derived from potato, sugarcane and beetroot. The coming years will see a shift from the so-called first generation feedstocks to second-generation feedstocks such as cellulosics. Cellulosic feedstocks consisting of crop residues, wood residues, yard waste, municipal solid waste & algae sidestep the conflicts in arable land use. They can be converted to sugars by enzymatic hydrolysis and biomass pre-treatment. Cellulosic feedstocks are already being used to produce cellulose acetate and and lignin-based polymers. Non-foodcrop based fermentable sugars will become available for energy, chemicals and polymers as biorefineries perform various process steps required to produce different bioproducts. Where biodegradability and/or compostability used to be the characteristic property of bioplastics, more biopolymers are now being developed that instead are built-to-last. Landfills will no longer be an option.

Mind blowing stuff indeed… basic polymers derived from materials other than oil is becoming a reality ! Conquering the last frontier ?

CFRP REPLACES GFRP

SPORTS CAR

We all know that GMs Corvette was one of the earliest vehicles to use GFRP body in the 1950s. Almost 60 years later, the 2014 Corvette will come with a CFRP bonnet ( replacing the current SMC version with a weight reduction of 50% ) and roof [Plastics & Rubber Weekly]. The weight reduction helps to lower the Corvette’s center of gravity, thereby improving performance. The CFRP panels come to the assembly plant ready to be painted as in the case of current SMC panels. This facilitates bringing the carbon fiber on line seamlessly.

Classic case of how technology changes with time and manufacturers embrace the same without shirking…can there be a better example than GM ?

China became home to the world’s longest high speed rail line in December 2012 with the opening of the 2,298 kilometer stretch of metal bisecting the country between Beijing in the north and Guangzhou in the south [Wall Street Journal, China].China already boasts of several firsts in numerous fields. Hence, no surprises on this one.

And the award goes to ……..

1238327_questions

February is a big month for the entertainment industry. The Grammy Awards are due in the second week followed by the Oscars in the last week. As the world awaits the verdict, it is fair to state ….may the best in each genre bag the award.

The weather had been unpredictable for the major part of 2012 and this January, with bitter cold spells, lots of snow and even temperatures well above the freezing mark in some instances. At  the annual Groundhog day late last week; groundhog Punxsutawney Phil did not see his shadow, which signaled the advent of early spring….well before mid-March.

It is quixotic…. while we rely on breakthroughs entrenched in a swathe of hi-tech for scientific advancements on one side, we also turn to folklore to predict the advent of change of season that some meteorologists may find baffling.

In this fast paced world, I guess we need a healthy mix of both to keep the positive thoughts flowing and remain optimistic of the outcome.

Till the next post,

Cheers,

S. Sundaram

EmailSS@essjaycomposites.com

Twitter@essjaycomposite

Website: www.essjaycomposites.com

Thermoplastic composites….progressively gaining ground

Hello again,

At the outset, I wish all a Happy & Prosperous 2013.

NATIONS – CAUTIOUS OPTIMISM

875590_world_economic_growth

The majority of readers would be back at their desks after the holiday break with a silent prayer on their lips for an accelerated regional and global economy revival – the former to boost its (respective) nation’s economy and the latter to provide a fillip to global trade, thereby benefiting the exchequer.

Stock markets around the world have rejoiced at the U.S. averting the fiscal cliff. The Dow and S&P registered sharp gains. The heartening feature, of course, was the extension of the wind energy Production Tax Credit (PTC) till end 2013 – the 2.2 cents/kWh incentive for wind power plants. The extension of the tax credit has huge implications for the composites industry especially for glass/carbon fiber (and fabrics thereof) and resin producers.

Fortunately, politics did not play spoilsport on the renewable energy policy.

 JIGSAW PUZZLE ?

949574_-jigsaw_world-

In a recent weekly piece, a columnist from Export Development Canada  likened the world economy of the past four years to scrum – a rugby configuration. Globally, powerful opposing forces have been locked together in an epic struggle between growth and decline, with neither side prevailing. Initially puzzled and confused, people became despondent and resigned to deadlock as the new permanent state of affairs. The European economy could drag in 2013. Japan’s recent growth burst has been attributed largely to reconstruction funds and unlikely to last this year. The mighty BRICS economies are flattering to deceive. In spite of being in the news for numerous reasons, U.S. revival looks optimistic as industrial capacity is within a hair of pre-recession limits with Corporations sitting on trillions of cash which they are just about to start spending. The shale gas boom (low energy costs) has also served to act as a timely catalyst for the manufacturing renaissance.

A silver lining on the horizon in 2013 ? A U.S. economy on the mend for valid logical reasons (and not wishful thinking) may just be the answer.

SEAT FRAMES – DESIGN REVOLUTION

727939_audi_a8_rear_view_interior

Composites have replaced spot-welded steel wire in a rear seat cushion frame for the 2012 Kia Motor K9 sedan, thereby entailing a 25% weight reduction and 10% cost reduction. The frame uses a long glass fiber reinforced Polypropylene (PP) with pellet lengths of 13-15 mm and high-crystallinity PP as the base resin [Plastics Today]. The folding composite seat back comes in two versions – an one-piece seat back and a split version. The parts are reportedly the first using injection molding to realize a completely flat rear floor structure. A major advantage of the rigid rear seat cushion frame is passenger protection. During frontal collision, passenger bodies tend to move down towards the ground, resulting in seat belts engaging in the stomach area and potentially damaging internal organs. The optimized structure of the new seat cushion frame supports the passenger in the right position so that the seat belt starts to engage in the pelvic region. Pressure and temperature sensors were reportedly used to prevent warpage on such large projected molding area. Significant mold flow analysis was carried out to optimize injection gate locations to minimize part distortion and avoid weld lines in stress bearing areas. To achieve further weight reductions, the PP composite technology technique envisages use of woven type fiber reinforcements.

What better advertisement for composites when it comes to light weighting and passenger safety in sedans?

Thermoplastic composites based on hybrid co-mingled fibers (glass with polyamide, PP, PET) can be processed into semi-impregnated thermoplastic preforms (as woven or non-crimped fabrics) and molded in a single processing step. The quality of the component distribution in the co-mingled fiber affects the mechanical properties of the final composite. A recent study analyzes the blending quality along the length of the co-mingled fibers using a new blending index that combines the existing co-efficients of the lateral and radial distribution of fibers in the cross-section of hybrid fibers. Due to the combination of the fiber analysis along the fiber axis and in its cross-section, the new method, allows for the first time, a reliable comparison of the blending quality of co-mingled fibers [Sciencia].

HDPE REVOLUTION IN THE WORKS

1063869_orange_tubes

A composite HDPE pipe that is lighter and easier to install than conventional HDPE pipe for transferring water in oil and shale gas fracturing, mining and agriculture? Introducing the multi-layered HDPE pipe reinforced with glass fibers that weighs 80% less than conventional HDPE pipe. A 30-foot length pipe weighs 130 lbs and can be installed by two workers as against 700-800 lbs for a conventional pipe requiring a crane for installation [Plastics News]. The U.S. Company that has developed the pipe claims that it is bendable.

Considering the spurt in new applications, it is not surprising that almost 33% of the NA demand for composites is in reinforced thermoplastics.

WIND – BLOWING STRONG

524075_wind_power_plants

The share of electricity generated by renewables in the U.K. in Q3 2012 rose by over 25% (compared to the same period in 2011), mainly due to increased wind energy capacity. Renewable sources provided 11.7% of electricity in Q3. Per the Department of Energy and Climate Change, offshore wind energy increased by 54.2%, while onshore rose by 38.2% [Windpower Monthly]. According to the last “2012 Global Wind Power development outlook”, wind power had the potential to supply 12% of the world’s electricity needs and exceed 20% by 2030 [Energy Tribune]. Statistics from the International Energy Agency [IEA] indicate that China’s wind power installed capacity could reach 279GW by 2030, two points below the EU and that it could generate 330TWh of clean power by 2015. China’s new Five-year Plan calls for an installed capacity of 100GW by 2015 and 200GW of renewable energy by 2020 [Morning Whistle]. Meanwhile Vestas is in talks with Mitsubishi, Japan’s largest heavy machinery maker about developing an 8 MW offshore wind turbine which is 30% more powerful than the current record-holder [Bloomberg].

Big is beautiful, better and powerful…sure holds good for the wind energy sector where mega and giga are oft mentioned.

CORE TRANSFORMATION

972191_honey_comb

Thermoplastics forming the core of sandwich facings with honeycomb structure and based on PU,PS PVC, PET are well known. Recent studies on core materials made of polycarbonate (virgin and regrind), ABS, HIPS utilize interconnected cells in a unique configuration of truncated pyramids with sloping cell walls. Drop weight tests conducted to evaluate the dynamic flatwise compression strength and flexural strength show the versatility of such sandwich panels to possess good strength as well as energy absorption characteristics [Sciencia].

Natural gas from shale rock formation is making the U.S. and Canada among the lowest cost producers of ethylene feedstock globally. It is envisaged that this could lead to almost 15 billion pounds of new PE capacity (at lower cost) being added in the region between  2012-2017. Long-term, the low-cost regions will be North America (NA) and the Middle East which would compete for global growth [Plastics News]. More than 2.5 billion pounds of new ethylene capacity will come online this year followed by an additional 3.5 billion pounds in 2014. Global PE demand growth is expected to average 4.7% from 2012-17 with NE Asia averaging 6.2 %, NA at 2.7% and Europe at 2.4%. HDPE demand in this period is forecast to grow at 5% with capacity climbing to more than 27% ! The bottom line ?  PE pipe producers could hit a home run.

Would PE be the preferred material of choice over PP  for LFT and variations thereof  (including D-LFT, D-LFT-ILC) ? Some work needs to be done from a technology perspective knowing how non-polar PE is and its antipathy to adhesion/bonding ! But then, the industry has the wherewithal to tackle such challenges.

PAINTING – BEGINNING OF THE END ?

287873_ford_focus_rs

MIC Class A finish is claimed to have been achieved with 60% glass fiber reinforcement without the need for painting for an automotive application. The controlled crystallization rate employed during processing eliminates the need for painting without adversely impacting cycle time [Plastics Today]. The register vane component that directs air towards cabin occupants in Ford‘s 2013  models of Fusion, Escape utilizes polyamide 66 resin from Asahi Kasei Plastics. The upside was the saving in tooling cost following elimination of the painting process, in addition to reduced VOC emissions.

Studies were recently conducted on composite pressure vessels made of CFRP (carbon fiber and epoxy resin). Cylinders with a bias fiber orientation ranging from ± 40° to ± 60° were pressurized internally and they exhibited a matrix-dominated failure. Coupons with a fiber orientation of 50° or less exhibited a shear failure mode while those with 55° or more had a transverse failure mode. The gradual failure process was modeled and the stiffness degradation examined in the material co-ordinate system. Bi-axial stress-strain curves were simulated for each fiber angle. Results showed slight hardening in shear and significant softening in the transverse direction, pointing to the need to account for these post-yield effects [Sciencia].

 MOLECULAR  MARVELS

979139_molecule

In a forced game of molecular tug-of-war, some strings of atoms can act like a lever, accelerating reactions 1000 times faster than other molecules. This recent discovery suggests that these molecular levers can drive mechanical and chemical activity among atoms leading to designing new, stress-responsive materials. A simple change in the backbone can affect the speed at which mechanically assisted reactions occur. Since many materials break down after repeated cycles of tugging, stress and other forces, channeling usually destructive forces into constructive pathways could trigger reactions that make the material stronger when it is most desirable. From a commercial perspective, this concept can extend the material’s lifetime that can translate into applications ranging from composites for airplane frames to biomedical implants [Science Daily]. This research is being supported by the National Science Foundation.

Styrene monomer prices hit new record highs almost on a daily basis in December 2012 and this streak has extended into January 2013 to date [Platts]. The key factor for this price rise has been its feedstock  benzene, for which there was strong demand in the U.S. and China in H2 2012. Traders are bullish that this trend will prevail through Q1 2013.

SKY IS THE LIMIT ?

1119235_skyscraper

Building the world’s  tallest skyscraper in 90 days ? Not a pipe dream according to a Chinese company that plans to construct a 220-storey skyscraper in just that time. The construction starts this month and would be complete in March. Aptly christened “Sky City”, the building will be 10 meters taller than the current record holder Burj Khalifa, Dubai [Yahoo News]. Using the famed Lego blocks concept, the company eschews architectural beauty for simplicity and prepares the pieces offsite. It then brings everything together by sliding one inside the other when construction commences. By breaking everything down into simple blocks piled on top of one another, it allows them to build at an amazing pace – their goal is 5 storeys a day !

Tall can be simple, yet elegant.

I sign off this post on a cautiously optimistic note…the world  will continue to focus on sustainability and renewable energy (especially wind energy). 2013 is bound to be  a better year for polymers and composites with changing market dynamics on the thermoplastics front due to the shale gas boom in NA. The U.S. is expected to lead the global recovery (albeit in a measured way) with increased industrial production riding on low energy costs and set the trend for a more vibrant economy in 2014; with Europe and the BRICS also (hopefully) contributing their mite.

Till the next post,

Cheers,

S. Sundaram

EmailSS@essjaycomposites.com

Twitter@essjaycomposite

Website: www.essjaycomposites.com

Relentless pursuit of Innovation……..antidote to beat the economy blues

Hello all,

As cities in the U.S. battle back to normalcy in the aftermath of Superstorm Sandy, our hearts reach out to those affected………

TRENDING ENERGY 

Designated by the United Nations as the “International Year for Sustainable Energy for All”; the World Energy Forum was held in Dubai in the Middle East in late October. Despite increasing levels of investment in alternate energy sources and a more diversified global energy mix, fossil fuels continue to account for most of the world’s energy production. Representatives of various nations deliberated on the development of oil, natural gas and coal in the global economy as well as the accompanying environmental obstacles and ways that governments and industries are working to reduce negative externalities [AME Info].

Increased political support and private investment have made natural gas a viable automotive fuel alternative with large growth potential. At an average price per gasoline gallon equivalent in the $1- $2 range, the fuel is plentiful and affordable in the U.S., thanks to the huge success of  fracking technology. It burns more cleanly than gasoline, cuts greenhouse gas emissions by 30% and particulate matter by 95%. Currently, the fuel tank on a CNG vehicle is its most expensive single component. 3M‘s CNG tank solution reportedly combines its proprietary liner advancements, thermoplastic materials and damage resistant films to transform the pressure vessel industry. Using silica nanoparticle-enhanced epoxy resin technology, 3M plans to create CNG tanks that are 10-20% lighter with 10-20% greater capacity at lower cost compared to standard tanks while rendering them more safer and durable [Plastics Today].

The abundance of natural gas at low price has led to a manufacturing renaissance in the U.S. When energy costs are affordable, factories can once again hum with greater activity.

HEAT IS ON !

In the relentless pursuit of energy efficiency in automobiles, the goal for design engineers is metal replacement. Per industry estimates, a weight reduction as high as 50% can be achieved with plastic-for-metal substitution. Direct replacement of die-cast aluminum in mechanical water pump housings with polypthalamide (PPA), a semi-aromatic polyamide (nylon) is now possible [Design News]. Polyamide 66 reinforced with 50% glass fiber with higher stiffness and heat ageing resistance for continuous use over 3,000hours at 220C has been an effective substitute for metal in the engine compartment. Other advantages claimed are low system costs arising out of lower processing temperature, cycle time reduction, lower energy consumption and ease of welding.

This is just another example of plastics encroaching the domain of metals in “under the hood, close-to-engine components”.

Nanotechnology is progressing by leaps and bounds. Ever come across the application of polymer-based nanocomposites containing epoxy and carbon-based nanoparticles (carbon nanotubes and graphene) as a functional coating for glass fibers ? Recent tests have shown both mechanical and electrical properties of glass fibers are significantly enhanced after nanocomposites coating. Further, when graphene is used as nanoscale filler in nanocomposites, the coating functions as a barrier layer to prevent glass fibers from environmental attacks [Sciencia].

The word “nano” has not only revolutionized  materials technology, but extended its usage to all walks of life. Even Apple could not resist tagging it as a subscript with the iPod !

 SURFACE ELEGANCE

Beauty and brains are an ideal (and oft desired) combo! In composites parlance, this translates to high mechanical properties and aesthetics (surface finish) not only desirable, but essential in most molded products. Wavelet Texture Analysis (WTA) is a recent technique that has been used to automatically classify the surface finish properties of two FRP construction types (clear resin and gel coat) into three quality grades. Samples were imaged and wavelet multi-scale decomposition was used to create a visual texture representation of the sample, capturing image features at different scales and orientations. Principal component analysis was used to reduce the dimensionality of the texture featured vector, permitting successful classification of the samples using only the first principal component. Feasibility of this approach as the basis for automated non-contact classification of a composite surface finish using image analysis has been validated [Sciencia].

INTERFACIAL BOND

Fiber & resin producers and processors acknowledge the need for faster cycle times in automotive mass production. BASF and SGL are jointly working on  a cost-effective Thermoplastic Resin Transfer Molding (T-RTM) process as well as Reactive Injection Molding (RIM) that permits shorter processing cycles than conventional thermosetting RTM. To achieve good wetting of the carbon fiber and shorter cycle times in T-RTM or RIM, low-viscosity highly reactive caprolactum ( precursor for polyamide) is contemplated in order to obtain optimal bonding of the polyamide to the fiber through suitable fiber surface treatment [Plastics Today].

The key to technological breakthroughs is to start from first principles. Right? History is replete with pathbreaking  success stories of similar innovations that have revolutionized the industry.

Improvements in tensile strength by as much as 500% has been reportedly achieved by laterally cross-linking a polyurethane (PU) co-polymer with an extra MDI – a more rigid polycarbonate diol replacing conventional polytetramethylene glycol as the soft segment. The impact of possible molecular interaction between polycarbonate soft segment and lateral cross-linking results in a structural change. Shape recovery was over 90% [Sciencia].

LIGHT…..LIGHTER

Materials technology never ceases to amaze us.General Motors (GM) is using a blend of chopped carbon and glass fibers coupled with  proprietary nanoclay technology in a SMC application for the 2013 Corvette. Two blends of 15% by volume of chopped CF with 30% GF as well as inverse ratio in a nano-based resin system were tested. There was a 36% mass savings over traditional SMC for the parts involved that included floor, rear surround and wheel housings. Total weight saving was 15 lbs before addition of any hardware to the components. The shape (more corkscrew than platelet) of the nano clay structures contributed significantly to the strength of the parts [Plastics Today].

While on the subject of the automotive sector, the American Chemistry Council (ACC) recently touted the results of a life-cycle analysis that shows lighter weight plastic auto parts not only save fuel, but the fuel savings outweigh any impact from producing those parts. The ACC’s Plastics Division used two parts already in production – a front support bolster on 2010 Ford‘s Taurus sedan (46% lighter than a plastics & steel bolster) and the running board (51% lighter than a steel counterpart) on GM’s 2008 Chevrolet Trailblazer. While considering the environmental impacts of the bolster and running board at each stage of the product’s life cycle; including energy used during their production, product manufacturing impacts, product use and end-of-life treatment of parts; the study showed that lightweighting the running board would reduce energy use by 2.7 million gallons of gasoline over the vehicle lifespan, while reducing the weight of an all-plastic bolster would reduce energy by 770,000 gallons [Plastics News].

This just goes to prove the multifarious spin-offs of weight reduction in automobiles.

TIDAL POWER – EMERGING FORCE

The United Kingdom & South Korea have teamed up on the U.K.-Korea Ocean Energy Technology Co-operation Project in the footsteps of another agreement signed earlier this year between Renewable UK and the Korean Wind Energy Association.While the U.K. is the acknowledged world leader in offshore wind energy capacity  with 1,858 MW online (as of June 2012), it also has 2,359 MW under construction and more than 42,000 MW in the pipeline. South Korea has 2,500MW of offshore windpower under development with plans to build a 100 MW wind farm by 2014, a 400 MW project by 2014 and 2,000 MW development by 2019 [Renewable Energy World].

It is heartening to note that fostering of regional co-operation is enabling propagation of wind energy, with the U.K. sharing its expertise and knowledge for the benefit of the Asian giant.

RENEWABLES – ACING THE REST

Proponents of wind energy continue to tout its plus points to counter the perennial naysayers. Gas accounts for 48% of the U.K.’s electricity supply. Of the 372 TW hours of electricity it produces per year, 54% is lost as heat. Coal accounts for 28% producing 297 TWh and loses a higher proportion – 66%. Nuclear accounting for 16% of the energy supply with 162TWh, loses 65% and oil, with 3% of the supply, loses 77%. In contrast, renewable energy that accounts for 4% of the U.K.’s electricity supply producing 14TWh, loses less than 1% [Think Progress].

To industry observers, such debates on the pros and cons are obviously endless.

A German company [EPIC Polymers] is commissioning a new 4,000 Tons/year LFT production line in Q4, 2012 using an innovative impregnation technology with focus on high performance plastics such as polyamide (PA) and polythalamide (PPA). The fibers would include long-glass, carbon and aramid as well as tribologically modified grades and electrically & thermally conductive grades [Plastics Today].

BIO- (R)EVOLUTION

In mid-October, European Bioplastics released its annual market forecast. Worldwide production capacity for bio-plastics is forecast to increase more than five-fold from 1.2 million tonnes in 2011 to 5.8 million tonnes by 2016. Chemically identical bio-based versions of conventional materials derived from renewable building blocks instead of from petrochemical sources, are stated to be enjoying robust growth. Leading the field is partially bio-based PET which already accounts for approximately 40% of global bio-plastics production capacity. Second in place is bio-based PE constituting more than 4% production capacity. The preferred locations for new production sites are South America and Asia with Europe and North America serving as R&D hubs [Plastics Today].

Shale-gas boom in the U.S. (due mainly to the success of fracking) is expected to add enough ethane/propane to expand light olefin derivative production between 2014-16 to the tune of 6-10 billion pounds. This could result in the U.S. being a key supplier of polyethylene (PE) to the rest of the world. Industries in Mexico and Latin America are expected to benefit to a great extent through the availability of plastics for different market segments [Plastics News].

As stated in my June post, PE (at the expense of PP) could be a game changer in the coming years – both in terms of increased applications and, possibly price.

 GFRP REBAR – CONFIDENCE BOOST

The changes that  can occur in GFRP composites with ageing can affect its application, performance and lifetime. Hygrothermal ageing (accelerated ageing by moisture absorption and temperature change) is a very useful technique to evaluate durability of GFRP in a reasonable time frame. Dynamic mechanical thermal analysis (DMTA) is able to detect all changes in the state of molecular motion in polymeric composites, as temperature is scanned. In one such study, pultruded GFRP rebars were  subject to accelerated ageing in an alkaline aqueous environment at 6C for 1, 2, 3, 4, 6 months to evaluate the changes in glass transition temperature. Five different glass transitions at an average temperature range from 11 to 165C were observed at storage modulus, loss modulus and damping factor traces of DMTA. It was observed that the glass transition temperature changed up to a maximum of 6C compared with that of the control sample and believed to be due to moisture absorption by the rebars. No evidence of  degradation of GFRP was observed after 6 months of hygrothermal ageing [Sciencia].

BEST OF THE BRAINS

What happens when leading like-minded majors like Coca-Cola, Ford, Heinz, Nike and Procter & Gamble, all with strong R&D resources; join forces to accelerate the development of and use of 100% plant-based PET materials in their products. These five brands have formed the Plant PET Technology Collaborative (PTC) to support new technologies  to evolve today’s material that is partially made from plants to a solution made entirely from plants. Currently Heinz licenses the technology from Coca-Cola (PET beverage bottles made partially from plants) to select ketchup bottles in the U.S. and Canada [Plastics Today].

The resulting synergistic R&D of the five multinational companies spells success from the word go !

WATER…THE NEW GOLD ?

Climate and weather patterns are changing natural water patterns. Industrial pollution is making water a scarce commodity. It is therefore not surprising that water has been rightly dubbed the gold  for investors in the 21st century. In terms of consumption, according to Fortune; globally, agriculture accounts for 71%, industry 16% for a total of 87% of all water used. Thanks to innovative superfine filters, 20 % of Singapore’s drinking water comes from processed sewage. While desalination plants are common in the Middle East, one in America is underway [Yahoo Finance]. It is common knowledge that plastics & GFRP are used to a large extent in transportation and treatment of water. Little wonder that the number of pipe manufacturers (be it PVC, HDPE, GFRP)  is always on the rise and this trend, obviously, will continue for several decades.

Water…the elixir of life ?

AAH! RECORD OF SORTS

The Dubai Mall is the largest retail destination in the world and boasts of numerous applications of GFRP running into several hundred meters of skylighting and tonnes of composites. Dubai  is now home to the world’s largest department store dedicated exclusively to shoes ! The new 96,000 square feet store contains 15,000 pairs of shoes (for men and women) across around 250 different brands. The previous record holder was Macy’s 39,000 square feet shoe store in Manhattan, U.S.[Arabian Business].

So much for the luxury market and the fiscal might of petrodollars !

We shall be back with the next post in early January 2013 !

Till then,

Happy holidays !

S. Sundaram

EmailSS@essjaycomposites.com

Twitter@essjaycomposite

Website: www.essjaycomposites.com