Category Archives: Aerospace

Composites make inroads in metals domain through product innovations

Hello everyone,

Welcome to another post as we bid adieu to 2016 and usher in 2017 with considerable optimism and hope.

Whimper or bang

1323680_question_mark

The question remains whether we ended 2016 with a whimper or a bang? While the jury is still out on this one; the fact remains that from a stock market perspective, the year ended with a bang, what with the DOW reaching an all-time high in more than a decade. 2016 was probably like the proverbial curate’s egg – good in parts. While crude oil did not necessarily find its sweet spot on price, OPEC‘s decision to cut production was news to cheer about, though in the “sheikhs vs shale fight” [Yahoo Finance], round one went in favor of shale and the US continues to be a critical swing producer, thanks to technological advancements in fracking that has lowered the threshold price of oil for frackers to stay afloat and even remain profitable.

Ripple effect

world-ripples-1093334-m

The change of guard in the US has resulted in a December 2016 revision of main macroeconomic forecasts for both the US and other major economies. The latest Euromonitor projection for global GDP growth is 3.2 % in 2017 and 3.3% in 2018 [Euromonitor]. Trade effects resulting from prospective US policy changes in combination with additional global factors such as general low confidence, volatile financial markets and decreasing international trade are likely to result in sluggish growth for the developed economies. The “charity begins at home” philosophy is likely to prevail globally with nations being more concerned about their individual GDP growth!

Container shipping companies have been experiencing the pain right through 2016. International trade is likely to take a backseat for some more time.

Upside of resin chemistry

487794_chemistry_4 (1)

The composites industry is forecast to have sedate growth this year and there is no abatement when it comes to product and applications development. While fluoropolymers are known for their high temperature and chemical resistance, the development of glass fiber reinforced grades of polyvinylidene fluoride (PVDF) provides higher stiffness and strength for applications that include pipes, fittings, valves, nozzles, clamps and fluid connectors. PVDF’s creep and abrasion resistance coupled with long-term UV stability provides an admirable foil to the mechanical strength improvements from glass fiber [Plastics Technology]. The PVDF composite reportedly can be molded to make plastic valves that can be turned on and off frequently without distortion, tower packings that do not sag over time and cable insulations that do not thin out and drip off the protected cable. PVDF resins with a high melt-flow rate (MFR) are used to keep processing temperatures lower – though the addition of glass fibers results in a viscosity increase, the composite can still be injection molded at temperatures below 210°C and extruded at or below 240°C. Flexibility in modifying the PVDF’s molecular structure through co-polymerization with a monomer such as hexafluoropropylene (HPF) results in a range of physical and mechanical properties (especially ductility) that allows variation in glass fiber content (%). Excellent results were achieved in flame burn-through resistance tests (using propane torch) with a glass fiber loading around 20%. The composite outperformed aluminum in burn-through results – 430 seconds versus 85 seconds for the metal.

Fiber reinforced unidirectional (UD) tapes are now being considered for truck trailer floor panels, side walls and bulkhead of commercial vehicles resulting in lower trailer weight and lower fuel costs. Using either glass or carbon fiber and a thermoplastic matrix, the UD tapes have short manufacturing cycle times and can be processed and deformed by the application of heat [Plastics Today]. Available production techniques include lamination, weaving, overmolding, tape laying and filament winding. The UD tapes have a high density of fibers, high-quality fiber impregnation in the thermoplastic resin, minimal void content and fewer broken fibers [SABIC].

Composites on a high

aircraft

In late December 2016, Boeing delivered its 500th 787 ( >50% composites) Dreamliner. While order volumes for the Dreamliner have declined in the past few years, there is still an order backlog of 700 that will spill over into the next decade based on current annual production of 144 planes [The Motley Fool]. Airbus was almost spot on in delivering almost 50 of its newest twin-aisle A350 XWB jet that uses more than 50% composites. While aircraft deliveries in general are expected to accelerate in 2017, the industry is preparing for a slowdown in orders as airlines adjust to rising oil prices and a deceleration of passenger traffic growth [Financial Times]. The International Air Transport Association (IATA) is forecasting  traffic in 2017 to slow down to 5.1% (from 5.9% in 2016) while capacity is still showing signs of growing at 5.6% (from 6.2% expansion in 2016). The global airline industry is expected to make a net profit of $ 29.8 billion in 2017 and total revenues of $736 billion – representing a 4.1% net profit margin [Arabian Business Community].

Apparently there are no headwinds that affect the growth of composites in the aerospace sector in the near future considering the heavy backlog of orders for the 787 Dreamliner and  A350 XWB.

Offshore wind power – unstoppable

1336182_windfarm

The barriers to offshore wind power have been formidable. Europe has been the undisputed leader in harnessing offshore wind energy. Their success story over the years has resulted in costs dropping dramatically to even a record-low of $67/MWh for a 350MW farm in Denmark [Utility Dive]. Global wind energy experts anticipate significant future cost reductions for offshore wind power. In the median scenario, experts anticipate an average 30% reduction in the levelized cost of energy (LCOE) by 2030 (relative to a median-expert baseline cost of $169/MWh in 2014) with costs falling by 41% by 2050. The cost of offshore wind power, now in early commercialization, is expected to be 25% lower by 2030 and 38% lower by 2050 relative to the same 2014 fixed-bottom baseline. Floating offshore wind power costs are expected to dip faster than fixed-bottom, with costs converging over time. The contributors to lower cost – turbine size, longer blades, taller towers and bigger generators. Currently, offshore projects use turbines in the 6-8MW range. 10MW turbines are poised to take off in the next few years and 11MW by 2030. Turbine size alone can contribute to around 18% reduction in LCOE by 2030 apart from positive impacts on upfront CAPEX cost and OPEX (operating expenditure).

Carbon fiber producers have their task cut out in making the fiber available through plant expansions. Does size matter when it comes to offshore wind turbines? You bet!

Upping the ante in defense

military

Geopolitics is yet again in the forefront nowadays. It’s not just the new US administration which is bent on military build-up. From Europe all the way to China, the next decade will be marked by an increase in defense spending amid rising feuds and pockets of instability [Bloomberg]. Global defense expenditures rose to $1.57 trillion in 2016 from $1.55 trillion in 2015. China’s defense budget will almost double from $123 billion in 2010 to $233 billion in 2020. European Union (EU) members boosted their combined budget to $219 billion in 2016. The US is still the world leader in defense spending at $622 billion in 2016. It’s going to be a bonanza for composites globally in the defense sector.

High modulus glass fiber producers would probably be rubbing their hands in glee and looking at capacity expansions.

Substitution of die-cast metals with plastics and composites is a constant ongoing exercise in the automotive sector. The only polyphthalamide (PPA) with an aromatic content of  more than 50%  by weight from Royal DSM is targeting powertrain, transmission, chassis and thermal management applications along with industrial applications that includes reinforcing with carbon and glass fibers (as the case may be) up to 50% [Design News]. The new grade of PPA with a glass transition temperature >160°C is claimed to have outstanding mechanical, thermal and chemical properties.

Composites indispensable in lightweighting

837597_cars_and_trucks

With rising crude oil prices, the “pain at the pump” is back with higher gasoline prices. Automakers are constantly working to improve their fleets’ fuel economy. The real growth however lies ahead when the need to reduce mass from today’s cars climbs to 15% and higher [Plastics News]. A new study conducted by the Center for Automotive Research (CAR) found that in order to reach 15% weight reduction, a huge shift to use of composites, especially CFRP, was an absolute necessity. The components include pillars, cross beams and rails amongst others.This, in spite of the fact that the era of growth in US auto sales (cars and light trucks) apparently is over judging by the 17.6 million vehicles sold in 2016 – marginally higher than the 17.5 million sold in 2015. The auto industry is entering 2017 with analysts projecting the first significant decline in eight years [Automotive News]. The cumulative effect of rising gas prices and rising interest rates have been a dampener on household budgets. We should have more updates on automakers’ forecast for 2017 at the North American International Auto Show in Detroit in mid-January.

The concept of complete automated production lines for filament wound composite tanks for CNG and hydrogen-powered vehicles is gaining popularity [Plastics News]. Kautex is promoting the concept of tanks with a blow molded thermoplastic liner (polyethylene or nylon) subsequently filament wound with epoxy based CFRP. Extensive tests that include permeation, rupture, pressure and bonfire testing (to simulate car crash/fire) showed how the composite tank slowly melts and evenly releases the gas that burns up ultimately. On the contrary, steel tanks just explode. The key to performance and safety is the patented boss design (where hoses go into the tank).

SMART composites

Development of strengthening applications on ESSJAY COMPOSITES

Can car manufacturers overcome engine downsizing constraints such as increased temperatures and pressures through materials technology? Apparently so if one were to go by Solvay‘s new 35% glass fiber reinforced polyamide66 that integrates an unique smart molecule, self-reinforcement technology that can resist continuous heat stress of new generation engines [Plastics Today]. This new technology remains inactive during injection molding of car parts leaving the material behaving like a high-flow PA66. During the vehicle’s use, the elevated temperatures activate the smart technology leading to rapid cross-linking that boosts the mechanical properties far beyond the initial values. Ageing tests over 3000 hours at 220°C demonstrate very high retention property with tensile property gain >50% without degradation of elongation at break. The composite is intrinsically heat-friendly and eliminates the need for heat shields that may be required when using conventional materials.

Economic priorities redefined

704525_around_the_world_7

The global economic order with its hierarchy of economic priorities has been turned on its head following Brexit and the outcome of the recent US election. Achieving strong inclusive national-level growth to revive a declining middle class, kick-starting stagnant incomes and curtailing high youth unemployment is now taking precedence [World Economic Forum] through populist political measures. Multilateralism is likely to make way for bilateral and regional trade  and investment agreements. As stated in the earlier section of this post, with global trade at its nadir, it’s a state of “each nation unto its own” to create domestic demand, employment and achieve GDP growth.

Collaborate to succeed

success-succeed-business-money-sign-1091624-m

The bottom line? Irrespective of political upheavals in 2016 with more to follow this year, technological developments in the composites industry continue to abound. Here again, while the European Union and the US pursue their own objectives for the betterment and growth of the industry, the fact that raw material producers, processors and end users are successfully collaborating in an effective manner ensures that breakthroughs are always a given and we can expect more success stories of composites storming the metals bastion and creeping up to the double-digit mark, when it comes to material substitution.

Till the next post,

Cheers,

S. Sundaram

Twitter: @essjaycomposite

Website: www.essjaycomposites.com

We specialize in customized Market Analysis Reports in Composites

 

 

Advertisements

Composites on sedate growth, albeit global economic headwinds

Hello everyone,

Here we go again with another post, as it is back to business for many after the summer sojourn.

Growth, albeit tepid

1089161_money_rule_the_world_7

The global economy continues to face headwinds midway through 3Q 2016. The Brexit vote caught financial markets by surprise with equity prices declining worldwide in its immediate aftermath. In July, the World Bank downgraded it’s 2016 global growth forecast to 2.4% from 2.9%, based on sluggish growth in advanced economies, stubbornly low commodity prices, weak global trade and diminishing capital flows [The World Bank]. The U.S. GDP growth in 2016 is expected to be around 2.0%. The European Union is projected to have a GDP growth of 1.5% this year. China is forecast to grow at 6.7% while India’s robust expansion is expected to hold steady at 7.6%.

Geopolitics continue to wreak havoc on crude oil prices. High inventory levels have not been balanced by increased demand, thereby leading to continued depressed pricing. Oil pundits and economists alike remain flummoxed by the whipsaw trends.

In this context, I am reminded of the “change is the only constant” oxymoron.

Cool, stronger alternative

Brand-New-420mm-font-b-Radiator-b-font-Cooling-font-b-Fan-b-font-font-b

Composites continue to storm the metals bastion through technological advancements in materials and processing techniques. Composite cooling fans for large trucks, buses, off-road construction vehicles and mining, oil and gas industries are now a reality, replacing blades hitherto made out of thermoplastics and metal. Engines and their cooling systems are exposed to abrasive materials and are subject to extreme high and low temperatures. A thermoset molding compound with high glass content incorporating a tough resin was successfully developed and tested in the U.S. A key aspect in the development was designing the shape of the fan’s leading edge to get the most air movement, but in an acceptable geometry that could be molded [Plastics News]. The fan used eight blades measuring from 68 to 100 inches in diameter and passed wind tunnel tests.The combination of high strength-weight ratio, coupled with corrosion resistance and ability to be mass produced, enabled composites to be a success for this demanding application [IDI Composites International].

Confluence of pluses

1111157_bubbles

The use of 3M hollow glass microspheres in SMC and other molding compounds is well known. Following successful introduction of polypropylene filled glass microspheres in 2015, an Italian compounder has now introduced polyamide6 grades with the same glass microspheres [Plastics Today]. Available in various configurations, the new grades provide reduction in weight, good strength and shock resistance, shorter cycle times and exceptional dimensional stability of the molded parts. The glass microspheres can be used alone or in combination with chemically bonded glass fiber, which allows for modulation of the material properties, in order to achieve required goals in terms of lightness, mechanical performance and price. This augurs well for use in automotive applications in consideration of the new limits on CO2 emissions set at 95 grams/km starting from 2021.

The nano revolution

aircraft

Advanced composite materials such as CFRP used in the Boeing and Airbus passenger jets reduce overall weight of the plane by almost 20% vis-a-vis aluminum. While aluminum is known to withstand relatively large impacts before cracking, the layers in composites can break apart due to relatively small impacts. Polyether sulfone (PES) resins are known to be used to impart impact resistance to thermoset epoxy resin-based composite structures. New research has shown that carbon nanotubes can be used to fasten layers of composite materials together. The nanotubes are atom-thin rolls of carbon that are incredibly strong despite their microscopic stature [Plastics Today]. The carbon nanotubes were embedded in a  polymer matrix and pressed between layers of CFRP. Resembling tiny, vertically-aligned stitches, the nanotubes reportedly worked themselves within the crevices of each composite layer, serving as a scaffold to hold the layers together – displaying 30% higher strength (in a tension-bearing test) and withstanding greater forces before breaking apart. Currently, the plies of horizontal carbon fibers in a composite are held by the matrix and strengthened by Z-pinning and 3-D weaving that involve pinning or weaving bundles of carbon fibers through composite layers which ultimately does damage the composite. At 10 nanometers in diameter, carbon nanotubes are nearly a million times smaller than carbon fibers and have 1,000 times more surface area, enabling a better bond with the resin matrix. This development has positive implications for aircraft structural performance and strengthens confidence in CFRP’s damage tolerance.

Flights of fantasy when it comes to composites technology? You could say that!

Persevere to succeed

1049904_recycle_2

Ever since carbon fibers found increasing use in aerospace and industrial applications, there is a continuous quest to recycle CFRP composites, considering the high cost of the reinforcement. The most recent method to recycle nearly 100% of the fiber involves soaking the composites in an alcohol solvent that slowly dissolves the epoxy resin. Once dissolved, the carbon fiber and epoxy can be separated and used in new applications [Plastics Today]. This technique was successfully tested with vitrimer epoxies. Vitrimers are derived from thermosets and consist of molecular covalent networks and can flow like viscoelastic liquids at high temperatures. They contain dynamic bonds that can alternate their structure without losing network integrity under certain conditions. Alcohol has small molecules to take part in the network of alternating reactions that effectively dissolve the vitrimer.

Another technique that has potential success to commercially recycle carbon fiber from CFRP composites – expect more in the not so foreseeable future.

A step ahead in the learning curve

CNG tank

When it comes to composites use for CNG storage, manufacturers always come up with technologies that are one up on their earlier developments. Luxfer has launched it’s second generation CFRP cylinders for Alternate Fuel (AF) containment. The cylinders provide a 9% volume increase of CNG in terms of diesel gas equivalent (DGE) and a 15% weight savings compared to their earlier version [NGV Journal]. When compared to conventional competitive hybrid carbon-glass fiber cylinders, the DGE volume improvement reportedly increases to 14% and the weight saving grows to 30%. The latest design features a new polymer liner and patented boss design that provide the highest level of liner performance and gas retention. Feedback from customers in the refuse truck, class-8 heavy-duty truck and medium-duty truck sectors have been positive thus far.

Relentless pursuit

Double decker bus

The world’s first Euro 6 double-deck natural gas-powered bus is undergoing field tests ahead of delivery to the British market later this year. While the CFRP fuel tanks for single-deck buses were placed on the roof of the vehicle, space constraints in the double-deck buses necessitated positioning majority of the CNG tanks in a new compartment behind the upper passenger area. In addition to being quieter than the diesel models, the natural gas bus will (expectedly) produce much lower carbon emissions [NGV Journal].

The UK continues to be in the forefront when it comes to relentlessly pursuing ways and means of reducing carbon footprint.

Versatility prevails

708451_hourglass_3

Cycle time reduction is a key aspect that is linked to the fortunes of increased composites usage in automobiles. Epoxy resin producers have successfully developed  fast-curing resins in recent times. Polyurethane (PU) resin producers have not been far behind. The composite front transverse springs for the Mercedes Benz NCV 3 Sprinter uses dry glass fiber textile preforms  and PU resin molded by RTM with benefits of cycle time (compared to epoxy), whilst simultaneously achieving a 65% weight reduction over steel, in addition to superior fatigue resistance and metal insert reduction [Plastics News Europe].

Drill, drill, drill!

669130_power_plant_1 (1)

The success of shale gas production by fracking in the U.S. is legion. It has virtually turned the oil industry supply scenario on its head and the U.S. is been dubbed a swing producer. Earlier this month, the U.S. Energy Information Administration (EIA) released the International Energy Outlook 2016 (IEO 2016) and Annual Energy Outlook 2016 (AEO 2016) that shows significant increase in shale gas production through 2040. Per the report, shale gas production increased from 10 billion cu ft per day (Bcf/d) in 2010 to 42 Bcf/d in 2015. The report predicts that production will continue to increase to 168 Bcf/d by 2040 accounting for 30% of global natural gas production [Daily Energy Insider]. Six countries comprising the U.S., Canada, China, Argentina, Mexico and Algeria are expected to account for 70% of global shale production by 2040. This naturally begs the question of how much new capacity of propylene plants will be set up via the propane dehydrogenation route to compensate for surplus ethylene (and hence polyethylene) and deficient propylene (and hence polypropylene)? After all, reinforced polypropylene continues to be in great demand for a variety of industrial applications.

Points to ponder and plan for the future.

Chemistry spinoffs

clinic-doctor-health-hospital-large

Polybenzoxazine is a new polymer that exhibits some similar properties to polytetrafluoroethylene (popularly known as Teflon). It offers unusual properties that one would not find in other thermosets. The monomer is reportedly synthesized from phenol, formaldehyde and a primary amine. The resin offers some huge benefits such as near-zero volumetric changes or expansion, shrinkage and di-electric constant better than epoxy, very high modulus and a surface similar to Teflon, sans fluorocarbons [Plastics&Rubber Weekly]. The resin has excellent thermal stability and flexural strength, apart from being non-igniting and is considered a good bet for aerospace applications.

A new commercially viable polymer matrix on the horizon? Apparently so.

Space propulsion ahoy!

rocket-launch-space-discovery-large

Despite satellite launch costs falling like ninepins over the years, weight savings have always been welcome with open arms for this application. CFRP composites have been successfully used for satellite components as they enable almost 50% weight saving compared to steel and more than 30% compared to aluminum alloy. Low outgassing cyanate ester thermosets are generally used as the matrix in CFRP composites for satellite components [Plastics Today]. Mitsubishi Electric is doubling its satellite component production in Japan which is expected to be on stream by October 2017. It is likely to use it’s proven proprietary VARTM technology.

The euphoria in the automotive sector at the beginning of the year has waned in this quarter due to a combination of factors – tepid business climate, uncertainty (think oil!), slowing U.S. economy and the Brexit fallout. It was a mixed bag for vehicle auto sales in July. The orders for Boeing’s Dreamliner and Airbus AB350 have not exactly been on fire recently for a variety of reasons – the order books through 2021 and beyond are full though, thanks to the backlog.

Optimism – the elixir

Hope image

The global economy is predicted to perk up in 2017 and take wings from 2018. Remaining optimistic is the elixir of life. After all, what goes down must come up – as has oft been proven.

The composites industry ploughs on, though not a lonely furrow!

Till the next post,

Cheers,

S. Sundaram

Twitter: @essjaycomposite

Website: www.essjaycomposites.com

We specialize in customized Market Analysis Reports in Composites

Composites stay afloat with continued growth forecast in wind energy, automotive and aerospace markets

Hello again,

It was a tumultuous 2015 that we just bid adieu to while simultaneously ushering in 2016 with considerable hope and an eerie dash of cautious optimism. Economic trends are apparently coming to full boil this year as geopolitics take center stage.

Crystal ball gazing

1323680_question_mark

Crude oil prices do not appear to be bottoming out even at $30/barrel. The jury is still out whether it could hit $20 as also an outlandish $10 – the bigwigs in investment banking have their own theories and logic to back their assessment. Economists are divided in their opinion and there are several schools of thought -ranging from being overly optimistic to downright pessimism. The Cassandras, no doubt are having a field day. Whether the glass is half full or half empty is in the eye of the beholder.

The fact remains that any amount of crystal ball gazing at this juncture would probably only intensify the fuzzy picture. Going with the flow appears to be logical.

Slow and sure rebound

Global economy

In early January, the World Bank made a downward revision to the global growth forecast for 2016 to 2.9% (from the 3.3% forecast in June 2015) due to economic headwinds. China is expected to grow at 6.7%. U.S. growth projection has been trimmed to 2.7%. The EU’s (European Union) major economies like France, Germany and the UK could witness growth rate of 1% [Market Realist]. For the Eurozone’s 19-member economies as a whole, the GDP growth is forecast at 1.5%. The world economy grew 2.4% in 2015 – less than the 2.8% projected forecast and slower than the 2.6%  expansion in 2014 [Bloomberg Business]. In spite of news of growth of the U.S. economy, it is somewhat of a paradox that its manufacturing sector shrank for the second straight month in December 2015 with the industry’s key index ISM hitting 48.2% – the lowest since June 2009, and falling below the 50% threshold for the sixth consecutive month [CNN Money]. The strength of the U.S. dollar in the wake of dipping crude oil prices currently adds to the woe of America’s manufacturing.

Nevertheless, it is the U.S. and UK that are expected to lead global growth in 2016.

Fast and furious growth

837597_cars_and_trucks

North America and Western Europe were the key drivers of the improvement in global car sales in 2015 with volumes advancing 7% – the strongest gain in nearly two decades [Scotia Bank]. Little wonder that the thrust on lightweighting and cycle time reduction continues unabated in this sector. A new press-forming technology for the fast and efficient production of thermoplastic composite components for both the automotive and aerospace sectors combines, compacts, processes and melds plastic, glass and composite materials far more efficiently and with greater precision than can be achieved with conventional injection and compression molding processes. A novelty of sophistication in compression molding is reportedly possible by integrating active thermal management technologies into the mold face by enabling heating and cooling levels to be continuously adapted for each mold area and process stage, in real-time [Plastics Today]. Composite components can be rapidly formed using a one-shot stamp-forming process by dynamically controlling the heat applied to each mold area and achieving one minute Takt time (average time between start of production of one unit and start of production of the next unit).

Improvements abound

chemistry-410797-m

A new grade of Polyethersulfone resin from Solvay improves the toughness, heat resistance and processing consistency of a carbon fiber reinforced thermoset resin prepreg. The resin reportedly increases the impact strength of thermoset composites by nearly 40% and provides a step-change improvement in heat resistance. The polyethersulfone micropowder is compatible with a range of epoxy resin systems and disperses rapidly, thereby improving processability and consistency in high-volume composite production [Plastics Today]. Apart from being widely used in commercial and military aircraft applications, the resin also has potential in the automotive market segment.

In spite of gasoline costs being at an all-time low thanks to depressed crude oil prices, the focus on environmentally-friendly technologies such as hydrogen powered fuel cell vehicles has seen an upward trend with a spate of announcements from leading auto producers close on the heels of Toyota’s Mirai. Considering that water vapor is the sole emission, fuel cell technology has been touted as the future with Japan and Europe taking the lead in creating the requisite infrastructure (read fueling stations) to popularize the hydrogen-powered vehicles. Hyundai’s hydrogen-powered crossover concept car has a CFRP chassis  made of molded parts by vacuum assisted resin transfer molding (VARTM) using acrylic thermoset infusion resin. The 3D beam design combines woven carbon fiber braided tubing around a low density polyethylene preform that foams and expands during infusion. The patented design and process can be used to form both straight and curved components to create complex-shaped assembled structures [Plastics Today]. The CFRP components of the chassis and frame are robotically bonded with a structural adhesive, sans mechanical fixtures. The composite chassis rivals steel in strength and stiffness with a 60% weight saving to boot, whilst also meeting crash safety standards.

Blowing strong – en core in 2016

859561_mill

Advancements in technology and improvements in operational efficiency have resulted in the average purchase price for wind power in the U.S. falling to an all-time unthinkable low of 2.35 cents/KWh according to the U.S. Energy Department [The Telegraph]. At this level , wind competes with coal or gas even without a carbon tax. A study by Bloomberg New Energy Finance shows that the global average for “levelized cost of electricity” (LCOE) for onshore wind fell to $83/MWh last year compared to $76-$82 for gas turbine plants in the U.S. or $85-$93 in Asia or $103-$118 in Europe. While the official numbers are awaited, global wind power installations were anticipated to reach 63.7GW in 2015 – up 30% from 2014. Vestas, Gamesa and Nordex, three of Europe’s publicly traded wind turbine-makers, all doubled in value in 2015 after record industry installations [Bloomberg Business]. Fiber reinforcements and resins have also played a major role in blade technology enhancements that have led to a progressive increase in unit turbine capacity (MW) and blade length over the years without sacrificing performance.

GFRP and CFRP composites are the principal gainers when it comes to onshore and offshore wind energy.

Leading from the front

fast-cars-1-362545-m

BMW has been in the forefront when it comes to use of CFRP in automobiles. It has commenced using water assist for its HP-RTM processing of the curved section of the CFRP roof carrier of the new BMW 7 series. The water assist technology equipment from Maximator GmbH consists of a water treatment unit and a pressure unit [Plastics News]. The special water injector with multiple integrated monolithic valves is larger and heavier than injectors conventionally used with water assist injection molding. The earlier version of the component had a foam core with carbon fiber braiding applied prior to impregnation by epoxy resin. In the new water assist version, a plastic tube replaces the foam core and is held under water pressure. The water is removed only after the resin has cured in a HP-RTM compression mold. The high temperature utilized in the HP-RTM process coupled with use of pure demineralized water and specific metal alloys prevents incidence of corrosion. The hastened curing process and consequent reduction in cycle time was achieved by heating the water.

Another success story of a collaborative effort between press manufacturer, toolmaker and epoxy resin producer.

Riding (past) the rough tide

9832-a-motorboat-on-the-ocean-pv

There was news to cheer about in the marine sector where glass fiber (GFRP) is used extensively in a variety of boats. According to the National Marine Manufacturers Association (NMMA), powerboat sales were up by 8% in 2015 with a 6-8% growth forecast for 2016. The reasons attributed to this growth are a steadily improving economy and several product innovations. Most powerboat segments experienced growth through Q2 2015 (compared to the same period in 2014). Jet boats were up 18.1%, wake sports boats up 12.1%, deck boats up 11.3%, personal watercraft up 8.2%, pontoon boats up 6.6% and bass boats up 5.3%. Other GFRP outboard boats (including center console boats, sport fishing boats and flat boats) were up 11.1% [IBI Plus International Boat Industry].

With the number of powerboat sales back to pre-recession levels, is it a case of “happy days are here again” for the marine sector?

Composites challenge metals

1157211_airplane

It is a known fact that the Airbus A350-900 utilizes composites for the wings and fuselage frames. The quest to save weight in aircrafts is perennial. Carbon fiber reinforced PEEK has been used to replace aluminum in a fitting for the aircraft door of the A350-900. The injection molded component has received regulatory approval and entered serial production. Substitution of metal with composites results in brackets that are 40% lighter and equally less expensive in production [Plastics News]. The composite structure uses an outer skin along with a bracing structure on the inside. The reinforced PEEK bracket connects the outer skin to points on the internal bracing structure. The two components form a box-like structure to exploit the maximum geometrical moment of inertia (MI). Whereas aluminum requires a special coating to prevent corrosion, the reinforced PEEK withstands moisture that accumulates inside aircraft doors. In addition, the composite has up to 100 times longer fatigue life and up to 20% greater specific strength and stiffness compared to aluminum under the same conditions.

In my September 2015 post, I had mentioned the live-and-let-live motto of the automobile industry being the future norm when it comes to using a combination of materials. The BMW 7 Series boasts of  the first ever volume-production automobile using a CFRP composite, aluminum and super-high-strength steel to increase the rigidity and stiffness in the passenger cell, whilst simultaneously reducing vehicle weight [Plastics Today]. The carbon fiber core body with hood and doors in aluminum results in a weight saving of 130kg. The design enables a 50:50 axle load distribution and also allows the lowering of the center of gravity.

Walking the (green) talk

environment-1445492-m

Since 2012, there has been a tectonic shift when it comes to embracing renewable energy and recycling. Global awareness of the ills of fossil fuel and ocean waste has been on the increase and the clamor for taking action has gone up several decibels, with Fortune 500 companies walking the talk when it comes to practical implementation on this aspect. Adidas launched a new concept shoe in Q4, 2015 made with ocean plastic waste and nets typically used to catch fish. The concept shoe consists of an upper section made with ocean plastic content and a midsole which is 3-D printed using recycled polyester and gill net content [Plastics News]. In June 2015, Adidas had introduced a shoe made almost entirely from recycled ocean waste.

Impossible is nothing – Adidas lives up to its slogan.

 The show must go on

dont-lose-your-patience-384110-m

Global trade headed south in 2015 with most countries witnessing a dip in exports. Amidst the uncertainty, what stands out is the the continued emphasis on product development and collaborative efforts on the part of organizations in the multi-pronged approach to lightweighting solutions in composites in the automotive, aerospace and renewable energy sectors.

With wind energy poised to enjoy an equally good outing in 2016 (as in 2015), this sector along with automotive and aerospace is expected to drive composites usage this year. Global car sales are again expected to strengthen this year before tapering off in 2017. Demand for multi-axial fabrics in onshore/offshore wind and marine market segments along with prepregs for aerospace coupled with LFRT (and chopped fibers) for automotive will keep the reinforcements (glass and carbon) market afloat this year in spite of economic headwinds.

Mergers and acquisitions will figure prominently in 2016 as the industry consolidates – a natural corollary in times of economic turmoil and when the “survival of the fittest” (in the business sense) adage is at play.

Its all for the greater good, in the ultimate analysis?

Till the next post,

Cheers,

S. Sundaram

Twitter@essjaycomposite

Website: www.essjaycomposites.com

Composites growth in tandem with global GDP – albeit a touch aided by lower energy costs

Hello everyone,

As we head into the final month of Q3 2015, the stock market is agog with frequent mention of the “September swoon”. Crude oil has been trending parabolically and the world is preparing for oil prices to be “lower for longer”.

Agony and ecstasy

1417329_run_for_profit_concept_3

Economic turmoil has roiled the world and the downturn in China has lent credence to the “if China sneezes, the world catches a cold” syndrome. The battle for oil supremacy continues – though there are no real winners when it comes to the double dip in oil prices as it hurts the economy of all oil producing nations alike, albeit in different degrees. The supply glut is expected to persist through 2016 if one were to go by the statements of industrialized nations and oil majors. Globally, the trend is veering towards a command-and-control economy.

Northward growth

world3-732564-m

Per International Monetary Fund (IMF), the global economy is expected to expand by 3.3% this year compared to 3.4% in 2014. The U.S. is forecast to grow by 2.5%, up from 2.4% in 2014; the eurozone by 1.5%, up from 0.8% in 2014; China by 6.5%, down from 7.4% in 2014 [BBC News].

Live-and-let-live motto

cars

Oil price swings did not act as a deterrent to automobile sales in the first half of 2015. Car sales in Western Europe accelerated to an 8% y/y increase. Passenger vehicle sales in North America were almost on a tear and advanced by 5% y/y through July, with full-year volumes likely to surpass 20 million units for the first time on record [Scotia Bank]. Though gasoline prices have not proportionately followed that of crude oil, the focus on lightweighting continues to be a relentless pursuit for the automotive industry. Unsurprisingly, the steel and aluminum industry announced new stronger and lighter grades of the respective metals in August. Novelis says it has developed a new grade of weight-saving aluminum sheet designed to replace steel in bumpers, doors and other safety-critical areas of vehicle bodies and which is 2-3 times stronger than the grade currently in high-volume production [Automotive News]. Steel makers’ collaborating with automakers is at an all-time high. The latest ultra-high strength steel to develop lightweight vehicles is more formable and saves the cost of converting factories from spot welding to riveting and bonding. It is a live-and-let-live approach of using a judicious combination of steel, aluminum and carbon fiber by automakers. Case in point is the next version of the BMW 7-series sports sedan and the Audi R8 sports car that use a combination of all three materials.

Constant innovation

VW Volkswagen Lightweight car

The versatility of polyurethane (PU) foam cores in sandwich construction is well known and a proven concept. Mass production of the roof module of a car has been achieved using honeycomb sandwich structure with Class-A film. It features a paper honeycomb and two surrounding glass fiber mats which are sprayed in an impregnation process with a low density, thermally activated PU foam (from BASF) and pressed together with a solid-colored Class-A film [Plastics Today]. It was possible to produce a roof module that was 30% lighter than its predecessor, in a single operation, while retaining the same strength and flexural rigidity. The process displayed uniform wetting of the glass fiber mats without any drip, resulting in good adhesion. Once the semi-finished product was impregnated, it was pressed into shape in a heated mold along with the Class-A film. The PU system foams up slightly at the edge of the sandwich and creates a solid material composite between film, reinforcing glass fiber mats and the paper honeycomb core. There was flexibility in adjusting the PU reactivity to achieve longer spray time of 120 seconds coupled with short demolding times of 60 seconds. Unlike conventional composite parts where the individual layers are glued together in a multistage process, the current process involves a single manufacturing step.

This is yet another example of reduced cycle time in composites to gain greater favor in automotive production.

Aerodynamics & fuel economy

aircraft

Boeing has been successful in upping its monthly production of the 787 Dreamliner from 10 to 14 in August and predicts deliveries of 130-135 for the year. Airbus has commenced building the first wings for its new A350-1000 and currently holds the mantle of the largest CFRP composite wing at 105 feet for each wing [Puget]. This is likely to be rivaled and superseded by Boeing’s planned 777-9X wing which will be 106 feet long – extending to 117 feet with a unique folding wingtip. Both the Airbus and Boeing wings are relatively long and thin made possible by the structural strength of carbon fiber composites.

Fuel efficient aerial dream machines? You can call them that.

What waste?

1049904_recycle_2 (2)

The quest for commercially viable technology breakthroughs in recycling carbon fibers and composites is perennial. At the forthcoming Fakuma International Trade Fair for Plastics Processing in Germany, Cannon will reportedly present its innovative EU-funded project CRESIM (Carbon Recycling by Epoxy Special Impregnation) aimed at the development of proper processing methods for the manufacture of CFRP parts using recycled carbon fiber through  closed loop manufacturing. The project addresses waste reuse by demonstrating a new innovative manufacturing process that potentially reuses up to 100% of the carbon fiber waste and scraps from different industrial sectors, thereby providing an opportunity for greening the production process and making efficiency gains [European Plastic Product Manufacturer].

Recall the Adidas slogan – impossible is nothing? The above just about sums it.

A glass fiber reinforced polyphthalamide (PPA) injection molding compound with high burst pressure and impact strength essential to withstand alternating stresses in dynamically stressed casing components in the automotive industry, has been introduced by Evonik. The molding compound also has good flow characteristics resulting in the molded parts having smooth defect-free surface [Plastics Today]. PPAs are semi-crystalline thermoplastics with high temperature stability and outstanding chemical resistance that can effectively replace metals in several applications.

Quick and efficient

529910_plane_windows

Additive manufacturing (aka 3D printing) has taken the world by storm in drastically shortening the concept-to-commercialization cycle. If you think additive manufacturing and the aerospace sector make strange bedfellows, you may want to think again. SABIC‘s lightweight polyetherimide (PEI) flame-retardant resin coupled with Stratsys‘ Fused Deposition Modeling (FDM) has addressed one of the biggest challenges facing manufacturing for the aerospace sector – the ability to produce small volume parts quickly and effectively [European Plastic Product Manufacturer]. The additive manufactured PEI (SABIC’s ULTEM) affords greater design flexibility, lower cost production runs and accelerated cycle times compliant with Federal Aviation Administration (FAA) and OEM flame smoke toxicity (FST) regulations. SABIC’s PEI has been certified to Airbus material specifications and the resin has been used to additive manufacture more than 1,000 flight parts in the A350 XWB aircraft fleet. The 3D-printed parts replaced traditionally-manufactured parts to increase supply chain flexibility. This success story has shown that additive manufacturing technology is making metal replacement development easier for OEMs than trying to upgrade a metal component to a traditionally-manufactured plastic replacement. It makes the whole cycle faster and less expensive. SABIC has an extensive range of carbon fiber(CF) reinforced PEI – can we expect a slew of 3D-printed CF reinforced PEI aircraft components in the future?

A beginning has been made. The first step has been taken. Could this just be the tip of the iceberg for additive manufacturing to make a big splash in composites usage in the aerospace and automotive sectors?

Blowing strong

mill-859561-m

According to the American Wind Energy Association (AWEA), 1,994 megawatts (MW) wind turbines were installed in the U.S. in the first half of 2015 – which is more than double the installations in the same period last year. Looking forward, more than 100 wind projects are under construction in 24 states, representing more than 13,600MW of total wind capacity. There are now 67,870MW of installed onshore wind capacity in the U.S.[Renewable Energy World]. Wind energy pricing is at an all-time low according to a new report released by the Department of Energy (DOE). The prices offered by wind projects to utility purchasers averaged under 2.5 cents/kWh for projects negotiating contracts in 2014 [Windpower Engineering & Development]. Wind projects built in 2014 had an average installed cost of $1,710/KW, down almost $600/KW from the peak in 2009 and 2010. In Europe, 584 offshore wind turbines were installed, adding 2.3GW capacity to the European electricity grid in H1 2015, per data released by the European Wind Energy Association (EWEA). In total there is now 10GW of connected offshore wind [The Guardian]. The average turbine size increased from 3.5MW in 2014 to 4.2MW in the first half of 2015. Commercial orders for 8MW turbines are trickling in. In August, the U.K. authorized the Forward consortium of four European utilities to build the joint-largest offshore wind project in the world. The two 1.2GW wind farms total almost four times the capacity of the largest operational project [Bloomberg]. The U.K. is banking on offshore wind to help meet its renewable energy and carbon targets and had about 4.5GW of capacity out of a total of 8.8GW at the end of 2014.

The turbine blades, whether onshore or offshore continue to rely on composites. The trend in using a carbon fiber/glass fiber hybrid in offshore to reduce cost is gathering momentum.

Chemistry at work

laboratory-glassware-1266835-m

Extensive use of Sheet Molding Compound (SMC) composites in automotive applications has been prevalent since the 80s. Progressive developments in reduction of the specific gravity have evolved over the years through recipe changes involving chemistry. The successful use of chemically (silane) treated glass microspheres (from 3M) by CSP in lowering the specific gravity of SMC to 1.2 has paved the way to allow significant weight savings in composite body panels for the 2016 Chevrolet Corvette. A total of 21 composite body panels including doors, decklids, quarter panels and fenders have been developed for the Corvette. The low-density SMC is reportedly cost competitive with aluminum with considerable savings on the tooling cost vis-a-vis aluminum [Plastics News].

The trend in use of biotechnology for recycling of carbon fibers is embryonic. Around 3,000Tonnes of CFRP waste is generated in Europe alone. The Hohenstein Institute in Germany has reported success in using suitable microorganisms  to break down the epoxy resin matrix in CFRPs and returning it to the materials cycle as a metabolite. Simultaneously the carbon fibers are extracted without damage so that they can be reclaimed for use in new products [Innovation in Textiles]. This biotechnology route could supplement the existing multi-stage pyrolytic process for recycling carbon fibers.

Recycling trendsenvironment-1445492-m

A discerning global trend is the focus on a green environment and emphasis on recycling/conversion of all forms of waste to usable products. Typical examples are denim wear and sneakers from ocean plastic waste, ultra-clean fuel from unwashed waste plastics, to name a few. The fact that leading brand names such as Adidas and others are involved in such green projects underscores the relevance in today’s context. Believe it or not, the next great renewable energy source is tipped to be algae biofuel according to the U.S. Department of Energy. It is the newest and seemingly most viable form of clean energy, besting even solar. Algae, found throughout the oceans employ photosynthesis to create energy using sunlight. Some types of algae produce oils that they use to store energy – implying certain algae can be grown and harvested to produce biofuel, a net carbon-neutral process [Yahoo Finance].

When it comes to technology, we are living in a world where breakthroughs are imminent – be it graphene which is being touted as the material of the future (read next decade when it should be commercially viable) or biofuels where aviation tests have already shown promising results.

Millennials are bound to reap the benefits from such exciting technology breakthroughs that have the potential to fructify commercially in the coming decade.

Till the next post,

Cheers,

S. Sundaram

EmailSS@essjaycomposites.com

Twitter@essjaycomposite

Website: www.essjaycomposites.com

Composites march to the beat of revolutionary concepts in approach to design

Hello again,

Welcome to another post on developments in polymeric composites and interrelated news on the global economy.

As we approach the end of H1 2015, it has obviously been a roller coaster ride thus far.

Dare to predict?

1238327_questions

The oil market wears the look of a burst bubble as also base metals, with copper retracting by more than 12%. Precious metals such as platinum have fared no better (much to the glee of glass fiber producers). Oil price swings (a case of politics playing spoilsport?) continue to confound experts and even crystal ball gazing at this juncture would be dismissed by many as a futile exercise. Naysayers continue to have a field day.

Uncertainties aside, it is important for the show to go on. Right?

Road to recovery

world-economic-growth-875590-m

In early June, the Organization for Co-operation and Economic Development (OECD) cut its global economic forecast for this year to 3.1%, but says it expects lower oil prices to ensure a gradual recovery even if weak investment remains a worry [International Business Times]. Global GDP is now projected to grow at 3.8% in 2016 with China’s heady GDP expansion rate of recent years tapering to 6.8% in 2015 and 6.7% in 2016 from 7.4% in 2014. Credit Suisse expects the U.S. GDP to grow at 2.2% in 2015. The Japanese economy is expected to grow at 0.7% this year (better than the flat growth of 2014), buoyed by strong foreign demand for its goods [Business Insider]. Cheap oil has had a dramatic effect on European consumer spending in 2015. The combination of savings from cheaper fuel, a more functional financial system, monetary easing and a cheaper euro is expected to keep the region’s economic trajectory on course in H2 2015.

The fact remains that the global economy is on the mend and growth, though tepid, is being observed in most regions. Oil price continues to wreak havoc, but we are slowly getting used to taking it in our stride.

Trade shows – one too many?

we-are-in-a-bubble-1709-m

The number of global trade shows in composites has witnessed a major jump in recent times. Visitors continue to stream in at most shows that hold relevant technical conference sessions/tutorials in tandem. The quest for knowledge in keeping abreast of the latest developments, remains unabated. Organizations revel in showcasing their latest wares, while extolling the numerous benefits that accrue through use of their raw material(s), machinery, simulation software and/or processing techniques for novel applications backed by sane analysis of the commercial viability through Life Cycle Assessment. One never ceases to be amazed by the plethora of offerings at these trade shows.

For sure, it augurs well for the composites industry at large.

Total rethink in designing

837597_cars_and_trucks

Demand for new cars and light trucks in the U.S. in May was more robust than anticipated. At 1.63 million, total sales was more than the 1.59 million units projected [J.D. Power]. The auto industry’s focus on lightweighting to boost fuel efficiency is nothing new. This has resulted in quite a bit of aerospace technology creeping into products with manufacturers employing a healthy mix of carbon fiber, glass fiber, aluminum, magnesium and high-strength steels. Ford recently showed how carbon fiber body panels enabled creation of “negative space” – open spaces through the body of the 600HP-GT vehicle to enable air to flow through it rather than around it [Design News]. The full carbon fiber driver/passenger cell has aluminum front and rear subframes with structural carbon fiber body panels. A concept car called the Fusion MMLV (multi-material lightweight vehicle) uses numerous carbon fiber and aluminum parts that would normally be made in steel. This includes carbon fiber brake rotors and seat frames, glass fiber epoxy front springs, carbon fiber wheels. Enough weight was taken out that resulted in an engine downsize from 1.6 liters to 1 liter. The focus is obviously not just on weight savings, but a reduction in rotating mass.

When the lightweighting concept extends to revolutionary approaches in basic design, the results can be phenomenal. In fact, this approach, in recent times, has begun to gain ground progressively.

Offshore blowing away onshore

1336182_windfarm

Renewable energy in general and wind energy in particular is growing by leaps and bounds. A record 4.2GW of offshore wind turbines is anticipated to be installed in 2015, per a recent Bloomberg New Energy Finance report. This is double the 2.1 GW installed in 2013, with Germany expected to lead installations in coastal waters with more than 2.3 GW this year, followed by 1 GW in the UK [Bloomberg Business]. Offshore wind power is increasing year-on-year and expected to reach 48GW by 2020, growing at a compound annual rate of 53% and aided, in part, by dipping technology costs. The Levelized Cost of Energy (LCOE) is now at around $179/MWh – down from $202 in H2 2014, in part due to currency fluctuations. Onshore wind power costs about $85/MWh. Siemens has recently come out with interesting stats. An offshore wind farm with 80 turbines produces 53 million MWh of electricity during its intended 25-year service life. It emits 7 grams CO2/KWh. In comparison, energy from fossil sources burdens the climate with an average of 865 grams/KWh. In other words, a wind farm saves 45 million tons of CO2 during its entire service life. This will result in continued increase in demand for industrial grade carbon fiber and, to a certain extent, glass fiber. Larger blades in offshore wind turbines entail lower weight and, consequently, a preference for carbon fiber, due to the density factor.

Considering the spate of expansions on the anvil by existing carbon fiber producers and new entrants waiting in the wings, there should be no dearth in availability of the reinforcement.

CFRP steps in…and how!

532191_airbus_a380_landing

The extensive use of carbon fiber composites in the Boeing 787 and Airbus 350/380 models has prompted identification of more components to replace metals in aircraft applications. A proprietary fusion-core technology features the development of a carbon fiber reinforced PEEK fuel housing that allows for undercuts in injection molding. The end result – a 30% cost saving and 50% weight saving in the production of the complex fuel housings for the global aircraft industry [Plastics Today]. The CFRP composite offers superior fatigue performance and enhanced manufacturing speeds vis-a-vis traditional aluminum for this application and also meets all engineering requirements including stiffness, effective flame, smoke and toxicity performance (FST) and resistance to aggressive chemicals, including jet fuel and hydraulic fluids. Conventional injection molding technology cannot be used for the complex inner geometry of the fuel housings – this necessitated utilizing a near net-shape process for the fusible core that allows for 80% time saving versus machined parts. Secondary treatments for corrosion protection such as anodizing, are eliminated; lead times are reduced by 50%.

Broadened horizonsprecision-1-529519-m

The ability to process pre-impregnated unidirectional (UD) fabrics/tapes made from high performance thermoplastics such as PPS and PEEK to ensure high levels of process control has reportedly resulted in the successful development of a high-temperature contact heating table that can achieve processing temperatures of up to 425°C. UD tapes are placed precisely on a moving table in layers and spot-welded using ultrasound [Plastics Today]. The orientation of the tape and the fibers can be set in variable ways by rotating the table and adjusted optimally to any load. The fabrics are then processed further and consolidated in a two-step heat transfer press process. The contact heating table heats up the fabrics before they are pressed to make laminates with the best quality and reproduciblity. Individual layers are bonded without air pockets and temperature distribution ensures homogeneity [Fraunhofer]. The potential of this process in aerospace and automotive sectors is significant.

Viable option in GFRP

1080691_engine

The powertrain system that includes the engine accounts for a large proportion of the weight of an automobile. The recent development of the cylinder block (engine component) in glass fiber reinforced phenolic composite in lieu of traditional aluminum has been encouraging with a weight reduction of 20% and comparable costs. To ensure a robust engine design, metal inserts were used to strengthen wear resistance in areas subject to high thermal and mechanical loads, such as the cylinder liner [Plastics Today]. The geometry of the parts was also modified to ensure that the composite is exposed to as little heat as possible. Sufficient rigidity, resistance to oil, gasoline, glycol & cooling water and good adherence to metal inserts were some of the criteria that enabled zeroing in on  phenolic GFRP with 55% fiber loading. Use of carbon fiber was also a technically feasible, though not an economical option. Test runs on the new engine showed lower running noise, lesser heat radiation to the environment and proven reduction in elimination of numerous finishing operations associated with conventional metal engines.

A total relook at overall component design rather than mere material substitution in recent developments, appears to be the hallmark of new applications in composites in the aerospace and automotive sectors.

Natural gas to the fore

105597_truck_5

The shale gas revolution in the U.S. has resulted in an abundance of natural gas. Vehicles being powered by natural gas are on the increase. Consequently, the demand for CNG composite tanks is growing and more fueling stations are being commissioned to factor this upsurge. Momentum Fuel Technologies has debuted a CNG fuel system solution for Class 6 to Class 8 trucks that features lightweight glass fiber composite using 3M nanoparticle-enhanced matrix resin technology. The tanks display 6% increase in burst strength, 25% weight reduction and 27% higher weight/volume efficiency compared to tanks made with conventional resin [Plastics Today]. Adoption rates for U.S. Class 8 NG-powered commercial vehicles is poised to grow from 4% in 2014 to 10% in 2018 and 23% in 2020. A five-fold growth in NG vehicles in the next five years is the forecast.

As natural gas is a low-carbon, clean burning fuel, the upside is a significant reduction in hydrocarbon, carbon monoxide, oxides of nitrogen and greenhouse gas (GHG) emissions.

Bio-plastics: a quantum leap

1024889_yellow_field

The focus on green energy, lower VOC and reduced GHG continues at a frenetic pace globally. Replacement of traditional polymer building blocks with bio-based materials is on the rise. According to a 2015 published report, bio-based production capacity is projected to triple from 5.1 million metric tons in 2013 (2% of total polymer production) to 17 million metric tons (4% of total polymer production) in 2020 at a CAGR of almost 20%. Bio-based drop-ins led by bio-PET (from plant-based materials) and new polymers such as polylactic acid (PLA) and polyhydroxyalkanoates (PA) will show fastest rates of market growth. Bio-based polyurethanes (PU) are also showing impressive growth. Most investments in new bio-based polymers is expected to take place in Asia because of better access to feedstock (such as sugarcane) and a favorable political framework [Plastics Today]. This is one more stab at the negative environmental effects of using fossil fuels.

Bio-based resins for the composites industry have already been around for several years, with leading resin producers offering a range of “green resins”. The list, no doubt, is growing.

Winning concept

1101636_yes_or_no

Ever since the Toyota Mirai was launched as the first mass-produced hydrogen fuel cell car (using CFRP tanks to store the hydrogen), the battle of zero-emissions has raged between EVs and HFCVs. As matters currently stand, EVs need recharging of batteries after 150 -200 kms whereas HFCVs could be driven 300 kms before needing to fill up again. In essence, the range is almost twice with HFCVs. Though the infrastructure to support HFCVs is patchy at present, it can change over time. Recall how the world scoffed at the first-generation Prius in 1997 – the rest is history [BBC News]. Hydrogen is the most abundant available element in the universe [Toyota] – its potential is huge as a clean energy source. The bottom line is that both EVs and HFCVs will use composites to a great extent – that’s what matters in the final analysis.

Both types of vehicles can co-exist with their USPs and are poised to take off in a big way by the end of the decade. Composites will continue to be the ultimate beneficiary.

Per latest stats from BP, the U.S. has dethroned Russia as the world’s largest producer of combined hydrocarbons – oil and natural gas. This is a clear demonstration of the seismic shifts in the world energy landscape emanating from America’s shale fields [Yahoo Finance].

Another instance of uneasy lies the head that wears the crown and that the numero uno status in any sphere is never a given?

Till the next post,

Cheers,

S. Sundaram

EmailSS@essjaycomposites.com

Twitter@essjaycomposite

Website: www.essjaycomposites.com

Cautious optimism is the watchword for 2015…..with US steering the global economy

Hello again,

At the outset, I wish all readers a Happy and Prosperous 2015 – an oft repeated start-of-the-year greeting, but one that merits mention nevertheless, for the sheer optimism and hope that it conveys.

Dollar Dominance ?

1272918_finance_symbols_2

2014 was another roller coaster year, though the last quarter showed signs of a near return to normalcy, crude oil price fluctuations notwithstanding and shades of justified hope on global growth in 2015.

The International Monetary Fund [IMF] predicts global growth of 3.8% this year compared to 3.3% in 2014 [BBC News] – the fastest growth since 2011. The steep drop in crude oil price implies consumers have more to spend (less pain at the pump) on cars, furniture, appliances, whilst also reducing business costs. Oil price aside, the main source of strength apparently is the buoyant US economy that is expected to register around 3.1% growth in 2015. The 5% growth in Q3, 2014 was the swiftest for any quarter since 2003 and the world’s biggest economy is on an extended win streak [Yahoo Finance]. China is slowing as it transitions from investment to consumption. It was driven by investment and export performance that couldn’t last forever. Goldman Sachs expects several years of declining growth rates for China.  Japan is sliding into a recession after a disastrous Q3, 2014. Russia appears headed for one, while Europe is barely growing and Greece in the news yet again. There are some rumbling sources of potential trouble on prospects of a really strong growth year, but there is a decent chance that 2015 will be another year of gradual post-crisis rehabilitation [BBC News].

Probably a touch of cautious optimism is called for ?

 Polyurethane: one-upmanship on epoxy

LEAF SPRING

Rapid strides continue to be made in new developments in the automotive sector in spite of low gas prices posing a threat to electric vehicles and, to a lesser extent, hybrids. Composite leaf springs are not a novelty – however, it is the combination of resin matrix, fiber reinforcement and processing technique that continuously undergoes technological advancements resulting in improved performance. The suspension of the new Volvo XC90 employs a transverse fiber-reinforced composite leaf spring instead of the usual array of coil springs. The compact design achieves a weight saving of 4.5 kg with additional functional benefits such as smoother ride, improved NVH (noise, vibration, harshness) and increased trunk volume as there are no suspension turrets [Plastics Today]. The RTM process for this composite spring uses Polyurethane (PU) resin from Henkel. Cycle time, that has been the bane of RTM in automotive applications, has been addressed through the use of low viscosity PU resulting in rapid mold-fill, fast fiber impregnation and short injection times. With a curing rate that is substantially faster than epoxy resins, cycle times are shorter, overall.

The quest in achieving shorter cycle times for more widespread use of composites in automotive applications, continues unabated. 

All-round innovation

car-racing-dtm-norisring-2005-353358-m

The Abarth 695 Biposto has been described by its manufacturer as the smallest supercar with the perfect synthesis between street performance and racetrack thrill. Extensive use of carbon fiber results in an overall weight of 997 kg of this two-seater that also uses Polycarbonate (PC) glazing for the front fixed window having built-in sliding panels. SABIC‘s Exatec coating technology reportedly meets European regulatory requirements for transparency, scratch and abrasion resistance for PC-based vehicle windows [Plastics Today]. CFRP composites are used for the front bumper, side skirts, part of the dashboard, under the rear bumper (diffuser), side mirrors and seats.

Tequila time?

mexican-flag-707324-m

Driven by surging Mexican factories, full-year 2014 light vehicle output for North America totaled 17.24 million – up 7% from 2013, according to estimates from Automotive News Data Center. The forecast for 2015 is projected at around 17.4 million vehicles. Mexico’s free-trade agreement covering dozens of other countries have made it an attractive base for exports overseas and to South America [Automotive News]. While US output and Canada production were both up 5% in 2014, Mexico gained a whopping 12%.

Mexico is the new manufacturing destination for several global auto majors judging by the spate of massive investments in that nation in recent times.

 Holy Grail of Designers

1157211_airplane

The aerospace sector has been in the news recently with the induction of the Airbus A350 and, apparently, orders rolling in for this aircraft rivaling the Boeing 787. As is well known, both planes use composites in excess of 50% by weight. Commercial aircraft use thousands of brackets from the cockpit to the tail of the plane. If made from metal, the total amount of brackets can add a significant amount of weight. Victrex has developed a new Polyaryletherketone (PAEK) -based polymer and an innovative hybrid molding technology that enable overmolding of a PAEK-based composite with fiber reinforced Polyetheretherketone (PEEK) injection molding grades. The hybrid molded composite bracket is able to deliver up to 60% weight savings compared to stainless steel and titanium, while offering equivalent or better mechanical properties such as strength, stiffness and fatigue [Plastics Today]. The hybrid process uses a pre-formed composite like an insert in the injection molding tool and allows the continuously reinforced thermoplastic composite to be pre-fabricated and used in the same way as a metallic insert in the injection molding process. The PAEK-based composite is thermoformed prior to insertion. The new PAEK-based polymer allows for 70% fiber loading and processing temperatures (enabling faster manufacturing cycle times) that are approximately 40°C less than traditional PEEK-based composites and creates a very strong bond between a continuously-reinforced thermoplastic composite and an injection-molding polymer. The PAEK bracket can be produced in minutes compared to the hours it would take for a metal or thermoset equivalent. Overall part cost is reduced through elimination of such steps as edge sealing and X-ray inspections. The PEEK polymers can be either carbon or glass fiber reinforced grades, typically with 30-40% fiber loading.

Just goes to show that even small components in an aircraft merit consideration when it comes to exploring weight reduction possibilities.

 OFFSHORE WIND – THE FUTURE

energy-1183635-m

Much has been spoken and written about wind energy becoming competitive with conventional electric generating technologies like natural gas and coal. In fact, a recent economic analysis by the leading investment banking firm Lazard using the “levelized cost of electricity”(LCOE) metric indicates that renewable generating technologies are not only competitive with fossil fuels, but are also cheaper than natural gas/coal in some markets [Forbes]. LCOE (referenced in one of my earlier posts), represents the per-kWh cost (in real dollars) of building and operating a power plant over an assumed financial life and duty cycle. LCOE for renewable generation is/can be lower in the near-term future than the “average” price of electricity provided by the electric power grid. In the most recent Annual Energy Outlook, the US Energy Information Administration (EIA) began using the “levelized avoided cost of energy” (LACE) for assessing the economic competitiveness of different generating technologies. The LACE metric estimates what it would have cost the grid to generate the electricity otherwise displaced by a new generation project. IEA expects offshore wind costs to drop 45% by 2050, while land-based wind expenses will decline by a relatively smaller 25%. The Department of Energy predicts a 40% price cut by 2030, while the UK (undisputed leader in offshore wind generation) expects turbine prices to drop overall expenses a sizable 17% by 2020 [The Motley Fool]. General Electric and other corporations are pushing for bigger, stronger and more efficient turbines in the > 4.1 MW range. While carbon fiber has been the mainstay for offshore wind turbine blades, glass fiber producers are introducing high modulus fibers to combat the stranglehold of the former. The key is in lighter weight due to longer blades – carbon fiber does have an edge over glass fiber on this score.

Only time will tell.

TOUCH OF INGENUITY

287873_ford_focus_rs

Stampable thermoplastics that received rave reviews in the 90s when they were introduced, continue to make progress in automotive applications. Faurecia has developed an integral structural floor comprising the front and rear passenger floor and trunk floor in glass fiber reinforced polyamide66 and made by the thermostamping technique. The thermoplastic composite also makes it possible to weld and overmold parts [Plastics Today]. The technology reportedly reduces part weight and costs compared to bonding, while producing a material able to withstand the very high temperatures created during painting that employs cataphoresis (cathodic electrodeposition). To muffle the noise, acoustic components were incorporated into the empty space between the upper and lower layers of the thermoplastic structure. The composite floor is 16.5 kg lighter than its steel counterpart (33% weight saving) and also reduces CO2 emissions by 1.65 gm/km.

CRYSTAL BALL GAZING

cars

When it comes to carbon fibers and CFRP composites, the Japanese have few peers. A 2014 report highlighting the Japanese perspective on automotive sector penetration predicts usage of CFRP parts will broaden from selected parts such as hoods and roofs in the 2013-2016 timeframe, to major structural components between 2017 and 2019 – especially in electric vehicles [Plastics Today]. Carbon fiber reinforced thermoplastics are expected to make inroads in less demanding applications such as interior panels in 2019 and then extending to exterior panels. Between 2020-2025, lower material costs, shorter cycle times and improved yields will see greater adoption in structural components.

Considering the catalytic role played by Japanese companies (carbon fiber producers and automobile manufacturers) in expanding the market base for CFRP composites, obviously they have done their homework right on this prediction!

COMPETE TO CO-EXIST

lighthouse-1318880-m (1)

CFRP composites are extending beyond rebar application in the construction industry. A lighthouse in Spain features a CFRP-GFRP combination. Several CFRP tubular profiles support a set of GFRP floor slabs and their bracings which surround the central tube that leads the stairs to the upper part in the lantern room [European Plastics News]. The structure consists of eight CFRP (epoxy matrix) tubular profiles, 31 meters high. The columns (circular section of 250mm diameter) are positioned in the vertex of an octagon inside a circumference of 4.5 meters diameter in the lighthouse base and 4 meters at its top. Four horizontal octagonal rings in GFRP with a diameter of 190mm are placed at different levels of the lighthouse every 6 meters. Five GFRP composite decks are distributed along the whole height of the lighthouse.

That GFRP and CFRP can co-exist in the design of a single structure – need further evidence?

SHALE GAS SUCCESS

refinery-bp-107264-m

The impact of the shale gas revolution on ethylene and propylene market dynamics has been dwelt with at length in several of my earlier posts. Less expensive ethane derived from shale gas makes ethylene production highly attractive and is behind large-scale US capacity additions. Companies such as Dow Chemical, Chevron Philips, Exxon Mobil and Royal Dutch Shell are betting on increased competitiveness in the US and are constructing crackers to produce ethylene [Plastics Today]. Global ethylene capacity is poised to increase from 167 million Tons/year in 2014 to 208.5 million Tons by 2017. The shift away from naphtha definitely puts propylene availability and price at a risk – but alternate routes are expected to materialize commercially in 2016 to restore parity, to some extent.

Crude oil price is expected to hover in the $60-70/barrel range through 2015 if one were to go by the budget projections of OPEC nations and others. From a consumer perspective, the drop in gas price at the pump was the silver lining in Q4, 2014. Will it continue through 2015?

A surging US dollar has battered most major currencies, with the euro currently trading at almost its lowest since 2006.

Fingers crossed as we wait to see what unfolds this year.

Till the next post,

Cheers,

S. Sundaram

EmailSS@essjaycomposites.com

Twitter@essjaycomposite

Website: www.essjaycomposites.com

 

Composites’ competitiveness to the fore

Hello everyone,

With Q3 2013 behind us and improving economic trends in the eurozone & U.S., Abenomics kindling a boost in economic activity with a far more volatile financial environment in Japan and conflicting views on China faltering; focus is on the final thrust by most nations to end 2013 on a healthier note than when the year began.

EUROZONE – COMPELLING 

1204327_euros

The World Economic Forum has come out with its latest 2013-14 Global Competitive Index of countries. As in previous years, the world’s top 10 remain dominated by a number of European countries with Switzerland (in pole position), Finland, Germany, Sweden, the Netherlands and United Kingdom confirming their places among the most competitive economies. Three Asian countries also figure in the top 10 with Singapore remaining the second-most competitive economy globally and Hong Kong & Japan occupying the 7th and 9th spots respectively. After having declined for four consecutive years, the U.S. has reversed its downward trend, rising by two spots to take the 5th position ahead of the Netherlands and Sweden.

It may not have been a great year for the eurozone, but  competitiveness says it all and underscores its importance in the global economy.

ADDING A NEW DIMENSION

_orange_tubes

In one of the earlier posts, I had stated that water would emerge as the new oil of the future. Transportation of water is thus a key factor to be dealt with and there is no dearth of piping materials – be it metals, plastic or composites. Pressure pipes come in many forms – from oriented PVC to fiber reinforced composites. A new innovative composite pressure pipe is made of continuous glass fiber reinforced high density polyethylene (HDPE) composite tape which is wound around a specially designed extruded thin-wall HDPE thermoplastic liner and heat treated in a proprietary process [Pipe and Profile Extrusion]. The pipe construction adds an outer layer of HDPE film to protect the system from both ultraviolet degradation and abrasion damage. At 4.26lbs/ft., the pipe is lighter than a pressure rated composite and plastic pipe of comparable diameter [Ticona]. Two people can easily lift and carry the pipe, thereby eliminating costs associated with unloading equipment, increasing safety and minimizing work site damage and reclamation costs. Rated at 250psi operating pressure, the 10.5 inch diameter pipe is designed for general water transport infrastructure including distribution systems, oil and gas operations, hydraulic fracturing feed water and produced water, large irrigation systems, tank farm operations and de-watering systems. Burst pressure of the finished pipe can be increased from the current 500psi by varying the number of layers of continuous fiber reinforced thermoplastic tape on the thin-walled HDPE liner.

The high demand for piping in the U.S. for fracking alone is significant. The icing on the cake is the abundance of HDPE that would be available down the line using ethane (shale gas feedstock) in lieu of conventional naphtha (crude oil feedstock).

 SMC WITH GLASS BUBBLES

1111157_bubbles

Thermoplastic composites have been making inroads in the automotive sector and challenging the traditional workhorse – thermosetting SMC. Not to be left behind, a custom SMC manufacturer in the U.S. has recently developed an ultra-low density SMC with high surface quality that is expected to find wide applications in the transportation and general industrial markets [Plastics Today]. Use of glass microspheres has resulted in attaining a specific gravity of 1.18 for the SMC which is at least 38% lower than the industry standard SMC formulations. The new SMC formulation reportedly offers outstanding toughness and intended for high impact applications. Its proprietary technology improves the resin-to-glass bonding strength on a micro-structural level by about 50%.

The dogged determination with which carbon fiber & resin producers and CFRP processors are collaborating to reduce cycle time of molded parts for the automotive sector is admirable. Innovative mold technology has resulted in automated manufacture of a CFRP vehicle engine hood with a cycle time of just 15 minutes. Featured recently at the Composites Europe 2013 show, the mold comprises a mold frame and two mold halves with an integrated sensor technology. The combined fixing and ejection units allow double-sided impregnation of the preform, enabling complex sandwich parts to be produced in a single process step [Plastics Today]. The mold surface topography has been optimized to such an extent that direct surface coating of the CFRP engine hood is possible – a major step towards efficient production as it involves dispensing with post-treatment of the part prior to applying the surface coating. Curved contours and stiffening structures improve the static and dynamic properties of the hood. The sandwich structure incorporates necessary fixing elements to avoid need for subsequent assembly of additional elements and enabling weight reduction of almost 60%.

Cycle time has always been the bane in greater use of CFRP in the automotive sector…not so anymore.

AN ODD COUPLE ? NAAH !

264691_liquid_contained

PVC thermoplastic resin reinforced with long glass fiber ? The twain have generally been considered an odd couple. Considering the spate of technological developments, it was therefore not surprising to hear Solvay‘s recent announcement of an innovative vinyl composite technology involving continuous long glass fibers impregnated with PVC powder that provide fire resistance, stiffness and high impact resistance. Target market sectors include marine, construction and automotive.

Timely reminder of the Adidas slogan… impossible is nothing.

Kawasaki Hydromechanics Corporation, Tokyo recently delivered a large composite molding system incorporating a 35,000kN hydraulic press to Japan’s National Composite Center (NCC). The system incorporates various processing options, including an in-line compounding extruder enabling long fiber thermoplastic (LFT-D) moldingRTM unit and an infrared heater for composite sheets. Priced at US$9 million, the molding machine is tailored for development of various large mass-production processes and able to mold large components up to 3 x 2 Meters in dimension. The molding system will reduce production cost through CFRP molding enabled by the LFT-D unit. By combining an IR heater and RTM injector, it will enable testing and selection of CFRP molding techniques most suitable for the shape, strength and cost profile of individual components [Plastics Today].

Rivaling the Germans when it comes to gigantic multi-functional hydraulic presses for composites ? A far cry and welcome change from a nation that has always prided itself in miniaturizing components and products especially in electronics and appliances sectors.

PERMUTATIONS & COMBINATIONS

284028_acura_tsx

Brace yourself for more fiber-resin variations and molding techniques combos. The prototype of a rear seatback using new continuous fiber-reinforced thermoplastic woven fabrics overmolded with specially formulated high-impact modified Polyamide 6 was recently staged in Germany [Plastics Today]. BASF also showcased a test part using its Combination of Inmold-forming and Overmolding process (CIFO) consisting of a 1.5mm thick formed laminate and up to 3mm thick molded-on functional elements such as ribs and cages. Demonstrating the characteristics of composite part manufacturing, special features of the component include sealing around the edges, long flow paths, formed holes, rib array & a ribbed U-profile beam. The same concept extending to polyurethane and epoxy resin systems with continuous fiber reinforcement is currently in the works.

CFRP matching aluminum and steel in torsional stiffness and that too with significant weight reduction ? An engine X brace with improved torsional stiffness is now available in CFRP as an aftermarket bolt-on. Aluminum replaced steel initially and cut weight by 40%. Now CFRP has replaced aluminum with a 50% weight reduction. Per Chrysler, a car with the part was subjected to a 500 mile road test and a thermal test was conducted to check for heat issues – none were observed [Plastics Today]. The estimated temperature requirement for the part is in excess of 230°F. Work is in progress for an improved RTM system with high-pressure vacuum assist. The brace uses 102 pieces of CF, varying in thickness from 2.60 to 2.75 mm.

LIVE AND LET LIVE

164895_modern_aviation_3

With all the euphoria surrounding the extensive use of composites ( around 50%) in the Boeing 787 and Airbus A350; aluminum is staging a comeback. An aluminum-magnesium-scandium alloy is under development that is expected to be 5% lighter than conventional aircraft aluminum and could be ready for the next generation jets. The new alloy that faces tests in labs and regulatory approval is also more expensive that conventional aluminum [Yahoo Finance].

As to the aircraft of tomorrow, it is bound to be an aluminum-composite hybrid according to industry experts.

September witnessed a flurry of price increase announcements for thermosetting resins in Europe by leading resin producers – the key reason being feedstock prices, especially benzene and its derivatives. Polypropylene (PP) price volatility in NA continues and this trend is likely to carry on until new propylene monomer capacity comes onstream in 2015. PP growth is thus likely to be impeded by supply and price in the short/medium term.

POWER IN NATURAL GAS

1075027_power_station

Natural gas is poised to displace coal as the world’s second favorite fuel by 2040. Natural gas demand is expected to grow 65% over the next 30 years, per ExxonMobil. This implies that the cleaner-burning fuel would provide 25% of world’s energy by 2040. Demand for natural gas is expected to come from a deeper penetration in electrical generation as it would be directly displacing coal [The Motley Fool].

Nothing is permanent except change – what can exemplify this classic cliche better than the September 30 news that Apple officially surpassed Coca-Cola (the brand that held the #1 position for 13 consecutive years) as the  world’s top brand [Yahoo Finance] according to Interbrand.

Composites are still decades way from displacing traditional materials of construction in a major way….but the success rate in doing so during the past decade has been phenomenal. Case in point – the Boeing 787 and Airbus A350 airplanes that boast of around 50% composites.

Till the next post,

Cheers,

S. Sundaram

EmailSS@essjaycomposites.com

Twitter@essjaycomposite

Website: www.essjaycomposites.com

Aerospace & Automotive Sectors….. the show goes on

Hello again,

Its back to business………..

Apart from being a vacation month for many, August was eventful in more ways than one.

AGAINST ALL ODDS

1388611_market_movements_1

It was mayhem of sorts for the stock markets and geopolitical tensions did precious little to allay fears of an exacerbation of the economy blues. The timing could not have more inopportune; especially when the “feel good” factor was just playing upon us with the eurozone reportedly coming out of an 18-month recession, the U.S. beating forecasts to register a 2.5%  growth in GDP in Q2 and Chinese manufacturing besting expectations with a 51.0 Purchasing Managers’ Index (PMI) in August – the highest level since April 2012.

Signs of prosperity in the face of adversity –  a classic example of diversity ?

SOARING IN CONFIDENCE

inside-a-plane-845059-m

The aerospace  (and composites) sector had a lot to cheer about in the last week of August. Boeing announced newer versions of the 787 Dreamliner in the offing. Ethiopian airlines [ABC News] that reported a record profit for the 12-month period ending June 2013, attributed it partly to savings in fuel costs arising out of the fuel-efficient 787 design…composites no doubt playing a significant role towards this cause.

Composites replacing aluminum has been a key feature of the new generation Airbus 350 (and the 787 Dreamliner). The latest innovation has been the development of the complete inner core door frame in CFRP using RTM technique, for the Airbus 350. The process enables the highly stressable CFRP composite to be produced with a comparatively high fiber volume content with good impact properties, while reducing weight at the same time. Manufacturing is via an injection process using the proven modular system found in Wickert downward presses. The hydraulic press system was designed to be absolutely oil-tight by completely enclosing the press area and the entire press technology peripheral system, including the hydraulic and electrical systems, since the carbon parts could not be risked to exposure to even a hint of oil mist. The control and process visualization integrates the injector, heating/cooling system and press shuttle. The cycle time for fabrication is six hours per airplane door – which is faster than fabricating with aluminum. The product will be on display at Composites Europe 2013.

Proof of the pudding ?  Aerospace grade carbon fiber producers and CFRP processors will probably be laughing all the way to the bank for the next few years with the projected (increased) roll out by both Airbus and Boeing of the A350 and 787 versions respectively.

REVVING UP

837597_cars_and_trucks

Currently, the North American auto sector is on a roll with a surge in vehicle production – in fact, the industry is being termed as being at “hyper-utilization ” [Plastics News]. Forecasters predict production levels to bounce back to between 15.5 million and 16 million vehicles this year, which is expected to climb above 16 million in the next few years. Global car sales advanced 4% in H1 2013 and is well poised to post further gains this year, aided to some extent by reduced headwinds emanating from Western Europe [Scotia Bank].

The UK is the strongest auto market in Europe with first-half 2013 sales posting a double digit increase. Per latest data from PwC Autofacts, New York, the developing Asia-Pacific region will account for 62% of overall growth in global automobile production through 2017. North America comes a distant second at 13.4%, with the European Union accounting for 11.7%, South America 6.7% and Eastern Europe 6.3% [Plastics Today].

Thermoplastic composites continue to play a major role when it comes to lightweighting in the automotive sector. BASF‘s new innovative approach involves use of laminates based on woven glass fabrics and unidirectional  (UD) tapes that are fully impregnated with polyamide (PA) or polyethylene terephthalate (PBT) [Plastics Today]. Overmolding materials also based on PA and PBT have been specifically developed for use with the laminates. The tape-laminate combination enables injection molding of complex parts that have very high mechanical reinforcement by use of continuous fibers at precisely defined locations, whilst simultaneously incorporating specific functions as the result of overmolding. For parts with very high stiffness, the overmolding compound can be loaded with up to 60% glass fiber reinforcement. For crash loaded applications requiring high impact strength and optimized for high energy absorption, specific tape-laminate configurations are available.

THE SUSTAINABILITY WATCHWORD

1049904_recycle_2

Innovation drives change. The BMW i3 electric car launched last month has its passenger compartment constructed of CFRP over an aluminum chassis. Interestingly, around 25% of the plastic used in the interior comes from recycled material and renewable sources. In the course of its development, the company claims to have developed the first recycling concept of its kind worldwide for CFRP components. Little wonder that the car has been described as a “revolutionary step towards sustainable mobility” [European Plastics].

Can there be a better advertisement for commitment to sustainability whilst simultaneously delivering performance ?

Chemical recycling of GFRP composites could soon be a commercial reality. A hydrolysis process has been applied to degrade an unsaturated polyester resin based on dicyclopentadiene (DCPD) cross-linked with styrene monomer in the matrix of a composite material reinforced with long glass fibers. Sub-critical conditions of water (200C <temperature <374C and pressure <221 bar) were chosen based on relevant chemistry for simple esters. A washing of the fibers is necessary and an important step in the process. Experiments measured the effect of process parameters on the efficiency of hydrolysis, on the quality of recovered fibers and on the nature of the recovered organic products. Identification of the recovered organic products indicate monomers of the resin are obtained and that secondary reactions also occur during the hydrolysis process [Sciencia].

A new dimension to GFRP recycling that is different from the conventional pyrolysis technique ?

 FIBERGLASS LINEALS – RESURGENCE ?

window-2-1112141-m

Pultruded fiberglass profiles as the supporting material for window and door assemblies have been around awhile. The American Architectural Manufacturers Association (AAMA) has long been an advocacy agency for the fenestration industry. The major advantages of fiberglass as a fenestration material are strength and stability – essentially strength means window frames can be slimmer, letting in more daylight. The slim look also mimics originally designed windows [Plastics News]. Stability is important as the more a material expands and contracts, the more the sealants will crack and leak. Pultruded fiberglass windows and doors combine the desirable properties of both vinyl and aluminum. The structural strength approaches aluminum and it can take dark colors like metal. The thermal properties are close to vinyl and co-efficient of expansion is equal to that of glass which is a boon to structural integrity. According to a recent study by AAMA, fiberglass windows in the U.S. have gained traction – garnering a 3.2% market share, up from 2% earlier.

Moral of the story ? Persevere relentlessly even in established applications to successfully increase market share.

 CHEMISTRY→PRODUCTIVITY 

487801_chemistry_7

Further updates on the novel Epoxy Structural Reaction Injection Molding (ESTRIM) technology that I had briefly touched upon in my April post earlier this year…… Cannon‘s ESTRIM technology is a fast-cycle molding system for composite parts made using carbon fiber reinforced epoxy resin that reduces demolding time of a finished composite part from 20-30 minutes of a standard RTM process to just 3 minutes ! This impacts productivity significantly in a positive way, drastically shortening the Return on Investment (ROI) in machinery. The quality of the molded piece is reportedly on par with the traditional process, while the high-pressure technology used to meter and inject the liquid reactive formulation allows for complete elimination of cleaning solvents from the production cycle [Plastics Today]. This provides significant benefits to workers’ health, working place atmosphere and process economies.

OFFSHORE WIND – UNSTOPPABLE ?

1336182_windfarm

In July, the London Array wind power project in the United Kingdom became the world’s largest offshore wind farm with a fleet of 175 wind turbines and a nameplate capacity of 630MW – enough energy to power nearly half a million homes and reduce harmful CO2 emissions by more than 900,000 tonnes annually. The UK currently boasts of more than 3.6GW of offshore wind power capacity which is forecast to more than quintuple in size by 2020 [Forbes]. With over 5GW of global installed capacity representing about 2% of total installed wind power capacity [GWEC], and with a whopping 80GW to be installed by 2020, the offshore wind market is picking up speed [Renewable Energy World]. With longer blades and carbon fiber being the preferred material of choice, producers have their task cut out for the next 3-5 years. Wind energy accounted for 43% of new electric additions last year adding more than 13GW of new wind power capacity to the U.S. grid in 2012. Wind energy now has the capacity to power all homes in the states of California and Washington. GWEC‘s latest report predicts a 11% drop in 2013 to just under 40GW followed by a sharp recovery in 2014 to slightly exceed 2012 market and average just over 11% annual market growth from 2014-2017.

Composites should enjoy a good run in this sector for the next few years barring unforeseen roadblocks.

A new grade of polyetheretherketone (PEEK) advanced engineering plastic has secured qualification from Airbus. The high-flow, easy-processing high modulus material can deliver an equivalent strength and stiffness at up to 70% lighter weight compared to traditional aerospace metals such as stainless steel, titanium and aluminum. The high modulus polymer provides up to 100 times longer fatigue life and up to 20% higher specific strength and stiffness when compared to aluminum under identical conditions [Plastics Today]. Considering the fact that removing 100lbs (45kg) can result in almost $10,000 in annual fuel cost savings per long-range plane, the potential to improving fuel efficiency is tremendous [Victrex].

A decade ago, plastics contributing to fuel efficiency in airplanes would probably have been scoffed at….not anymore though.

“INTELLIGENT” COMPOSITES

1157211_airplane

It is now technologically possible to embed radio frequencey identification (RFID) tags with ultra-thin antennas inside components made of CFRP composites such as aircraft wings – a technique that can also be adaptable to composite structural health monitoring [Design News]. CFRP composites can be conductive, and embedding RFID or other wireless chips can damp signals at commonly used frequencies such as LF, HF, UHF. Further, composite manufacturing is generally carried out at temperatures and pressures that might crush the chips, though the transponders are resistant to mechanical stress. The three frequencies work well with glass fibers – but carbon fibers interfere with the chips’ signal transmission, especially at UHF higher than 868MHz. The problem was circumvented by designing transponders that can withstand typical manufacturing pressures of 10 bar and temperatures as high as 180C and thus incorporating into aircraft components. The transponders measure only a few square millimeters and the antenna is thin enough to be embedded in composites while being protected by a thin layer of fibers [Fraunhofer].

 Is this the path to making intelligent CFRP composites ?

SHIFTING THE BALANCE ?

world3-732564-m

The U.S. is set to become a net energy exporter in the next few years thanks to the success in fracking (shooting steam and chemicals into shale rock formations to unlock natural gas) that is re-wiring geopolitics and the world of energy [ALJAZEERA]. The U.S. is now 100% independent in natural gas and, with increase in production of 15-20% per year, North America will be independent in oil. Per EIA‘s latest report, US crude oil production hit 7.5million barrels per day in July, the highest level in more than 20 years – by October,  monthly crude oil production will exceed  crude oil imports. Predictions are that the U.S. is set to overtake Saudi Arabia and Russia to become the world’ biggest oil producer by 2017. In my July post, I had mentioned the reservoir of “untapped energy” of approximately 37 trillion cubic feet of shale gas beneath 11 counties in the UK – the fact that the country is embarking upon fracking augurs well for lowering energy costs [Plastics & Rubber Weekly].

There is no doubt that the PE/PP market dynamics is about to witness a sea change in the near future. Ditto its impact on automotive applications, which is bound to be for the better.

UNTHINKABLE REALITY

739323_fuel_2

Imagine a future where Americans can drive coast-to-coast on a fuel made in America. The fuel, natural gas, is clean, affordable and fueling an economic competitive advantage that’s the envy of the whole world [The Motley Fool]. Clean Energy Fuels expects to have 150 natural gas fueling stations by the year end as part of its plan to build America’s Natural Gas Highway. These stations would refuel a truck in the same amount of time as conventional gasoline. The fact that more bus fleets will be powered by natural gas (due to its sheer abundance at competitive price) has resulted in a spurt in demand for CNG cylinders made of CFRP/GFRP in North America.

 A quantum leap of faith ?

TEQUILA TIME !

mexican-flag-707324-m

Mexico is beginning to beat China as a manufacturing base for many companies despite its higher crime rate, per new report from the Boston Consulting Group. Mexico’s gain is a plus for the U.S. as Mexican factories use four times as many American-made components as Chinese factories [Bloomberg Businessweek]. The other key advantages are: manufacturing wages, after factoring Mexico’s superior worker productivity are expected to be 30% lower than that of China by 2015; Mexico has more free-trade agreements (44 countries) than any other country; significant advantages in energy costs with natural gas prices being tied with those of the U.S. (China pays more than 50-170% for industrial natural gas); industry clusters, especially in auto and appliances which are growing (89 of the world’s top 100 auto parts makers have production in the country).

Re-writing the rules for manufacturing hubs ?

Scientists and engineers keep plugging away towards technological advances in spite of geopolitical tensions. It is as if they are insulated from external events. The well known cliche that technology brooks no barriers cannot be validated more vividly than the current global environment. Advancements in troubled times pave the way for rapid marketing of technologies when normalcy returns, thereby reducing the concept-to-commercialization timeframes.

It is during such times that we speak and think of  “what goes down must come up” and “hitting the bottom of the U”  philosophical concepts.

Till the next post,

Cheers,

S. Sundaram

EmailSS@essjaycomposites.com

Twitter@essjaycomposite

Website: www.essjaycomposites.com

Dynamic global landscape – shifting trends in polymers, composites and energy sectors

Hello again,

The world as a whole fared better than the average billionaire in 2012. According to the Boston Consulting Group‘s Annual Report released last week, global private financial wealth grew at an impressive clip of 7.8% in 2012, besting the 7.3% and 3.6% expansion in 2010 and 2011 respectively [Forbes]. The principal driver of the rise in wealth was the strong rebound in equity markets.

IN RETROSPECT & LOOKING AHEAD

1035681_money

2012 was also another year of strong GDP growth in the developing world where the collective economy expanded 10.1% compared to North America, Western Europe & Japan’s collective GDP that grew by just 2.3%. Continued double digit GDP growth, rising savings rate and soaring equity markets fueled a 12.9% increase in private financial wealth in the developing world compared to 5.9% in the mature economies. If this trend continues, the Asia-Pacific region will be home to a projected $48.1 trillion in wealth in 2017, making it the wealthiest region in the world and displacing the current leader North America, in the process.

Will 2013 play out differently with mature economies bucking the trend ?

Composite gas cylinders are progressively gaining momentum and can be used for household, bulk transportation and storage applications. Its container range includes low pressure LPG (propane/butane) cylinders and pressure vessels for CNG (methane). Russia’s first plant [Rugasco] to produce composite gas cylinders was formally commissioned late May with an annual production capacity of 200,000 low pressure gas containers [Plastics & Rubber Weekly]. An automated continuous production line uses continuous glass fiber strands by filament winding process using programmable robotics. This is followed by process of baking and epoxy resin coating and the addition of an outer protective cover. The composite cylinders are claimed to be 70% lighter than steel and enjoy the advantages of transparency and visibility of gas in the cylinder.

FAST AND FURIOUS

140789_lamborghini_murcilago

The race for producers to develop high-speed systems to produce CFRP parts for automotive applications is fast and furious. Toray‘s new system produces parts in 10-minute cycles without sacrificing mechanical properties, compared to 160 minutes for competitive systems. The key is a new resin curing system coupled with a slit prepreg approach and RTM innovation with resin impregnation and curing taking 3 and 5 minutes respectively [Plastics Today]. Mold setting and demold require 1 minute each. The reinforcement is produced by slitting continuous carbon fiber (CF) of a fast cure unidirectional prepreg at an angle from the fiber’s axis at a specific interval to increase drapeability, while maintaining their original positions. The slit prepreg is called unidirectionally arrayed chopped strands which circumvents the problem of bending stiff prepregs to fit in a mold. Molded parts maintain fiber distribution and show excellent surface finish at a 52% CF loading.

This new system was developed at Toray’s Japanese, European and American R&D Centers. Obviously, such successes do not brook regional barriers.

Machining of CFRP products cannot be avoided to avail a near-net shape. Studies in the development of prediction model on cutting force, cutting power and specific cutting force have met with success in assessing the number of machining parameters to be controlled and time taken for machining to determine cutting time. The developed models can be effectively used to predict cutting forces in machining of CFRP products [Sciencia].

PC IN & SMC ON THE WAY OUT ?

45335_bugatti

In automotive applications, polyester-based SMC continues to face stiff competition from thermoplastics. New Polycarbonate (PC) grades with extremely low linear co-efficient of expansion are being adopted for body panels in lieu of SMC. Teijin‘s new grade of PC has been adopted in the Lexus HS for the license garnish where the painted part required excellent dimensional stability because rear lamps fit directly as part of the rear hatch [Plastics Today]. Teijin has also developed a high pencil grade of PC that satisfies head impact requirements for auto applications, undergoing ductile fracture rather than brittle fracture. Full vehicle PC glazing is already being touted a distinct possibility in five years that would enable a 30-40% weight saving.

Technological advances in thermoplastics from grassroots is revolutionizing applications in the automotive sector. Will thermosets match the pace or continue playing catch up ?

Special lightweight nonwovens are being made from carbon fiber (CF) by auto major BMW as one step in the chain that eventually sees them converted into CFRP components. In contrast to woven fabrics, nonwoven bonding methods do not kink the fibers and detract from their special properties. The alignment of fibers in the fabric is crucial to achieving optimal quality in a CFRP component [ Innovation in Textiles]. The high tear resistance along the length of the fibers allows CFRP components to be imparted high strength by following their direction of loading. By overlaying the fiber alignment, components can also be strengthened against load in different directions.

When automakers also start donning the “materials & its forms’ thinking hat, the end result is bound to have success written all over.

SHALE GAS SPIN-OFF

1266636_laboratory_glassware (2)

The benefits of the shale gas boom in North America have been multifold. Apart from affecting the PE/PP market dynamics in a significant manner, it has now filtered down to even Polyamide 66 (nylon). Low-cost propylene derived from shale gas is now being used to to manufacture adiponitrile precursor and then Polyamide in an integrated manner [Plastics Today]. This means that it is cheaper to ship the resin from North America to China than it is to ship the intermediates. A new compounding facility in Florida churns out glass fiber reinforced grades of PA66 with close viscosity tolerance that generate lower levels of mold deposits, thereby enabling processors to run longer before tool cleaning. Target applications include connectors, under-the-hood auto and low voltage switchgear.

A company subsidiary of France-based Arkema has introduced new acrylic sheets that are pre-shrunk and designed for use in several components such as military canopies, aircraft windshields, side windows and wing tip lights [British Plastics]. Claimed to have excellent weathering qualities, the acrylic sheet is available in thicknesses varying from 0.125 to 1 inch, can be bi-axially stretched and has superior properties to glass, whilst meeting military specifications.

OFFSHORE WIND – FUTURE POWER

914408_wind_turbines_2

Wind power surged to a new record in 2012 with nearly 45GW of new installations, a 10% increase from 2011 according to Global Wind Energy Council‘s latest annual market update. The Council also projects a 11% decline this year to just shy of 40GW with a sharp rebound in 2014 to above 2012 levels and 61GW by 2017 [Renewable Energy World]. Another report released late May by the Energy Information Administration [EIA], states that extended Production Tax Credit (PTC) could push wind power production up by 34% in the U.S. in the next three years [The Motley Fool] since “generate power by 2013″ deadlines have shifted to ” begin construction by 2014 ” mandates, thus clearing the air of confusion following the PTC extension announcement in January. Per statement from the Department of Energy [DOE], out of a potential 4,150GW of offshore wind energy, the initiative aims to achieve 54GW by 2030, translating to roughly 10,000 offshore wind turbines averaging at least 5MW each and close to 4% of the nation’s electricity capacity [Renewable Energy World].

At an estimated 800-1,000kgs of carbon fiber per MW, producers can do the maths on the requirement of CF for this application alone in the coming years.

Volkswagen is producing large parts for its XL1 Super Efficient vehicle in CFRP that include the monocoque with slightly offset seats for driver and passenger, exterior body parts as well as functional elements such as the anti-roll bars. The parts, made by the RTM process, are produced in multi-shell, heated and vacuum-sealed tools. At just 1.2mm thickness, the stiffness and strength of the exterior skin matches metal while boasting of a density that is 20% that of a comparable steel part [Plastics Today]. The use of sandwich structures in the monocoque  coupled with aluminum structures in the front and rear sections, renders the vehicle safe. A special fleece layer of resin film is added to the parts as a cover coat for the Class A finish.

 FOAM INNOVATION

667981_sliding_doors

An Italian foam producer Acell has developed an uniquely effective method to mold doors and panels for the building/construction industry using proprietary foam combined with SMC. Arcells’ foam is a combination of proprietary ingredients that form a strong structural foam in densities ranging from 80 to 800kg/cu met and in a range of cell sizes. Successfully used in SMC doors, the proprietary foam acts as a breather, allowing gases to escape through the open cells and out of the mold. A single thin layer of SMC is used for each skin, molding pressures are very low (as the foam is deformable). During the mold cycle, the SMC skins lock, mechanically and chemically with the foam during the mold cycle.The low pressure and lack of abrasion permits molds that are not too heavy (unlike conventional SMC) and hence less expensive. The process permits use of woven fabrics to impart higher flexural strength to the panels.

DSM‘s Ultra High Molecular Weight Polyethylene (UHMWPE) fiber has been used as a ballistic material in an amphibious armoured personnel vehicle produced in Turkey. The lightweight, cost-effective ballistic tape has been used as spall liners that protect vehicle occupants from high-velocity fragments that are created when explosive shells send shock waves through the vehicle’s metal armor. The tape as a spall liner delivers a combination of high-end properties, including proven ballistic performance against improvised explosive devices (IEDs) and explosively formed penetrators (EFPs).

When it comes to protecting precious human lives, there should be no dearth in availability of various forms of ballistic protection from different materials, each unique and advantageous in its own way. Options ought to be aplenty.

 TRANSITION

467162_refinery

In the wake of the boom in North American energy (primarily related to shale in the U.S. and oil sands in Canada), the region has set off a supply shock that is sending ripples throughout the world. While geopolitical risks abound, market fundamentals suggest a more comfortable global oil/supply demand balance over the next five years [Yahoo Finance]. In the May release of its annual Medium-Term Oil Market Report, the International Energy Agency [IEA] forecasts North American supply to grow by 3.9 million barrels/day (mb/d) from 2012 to 2018 or nearly two-thirds of total forecast non-OPEC supply growth of 6 mb/d. World liquid production capacity is expected to grow by 8.4 mb/d-significantly faster than demand which is projected to expand by 6.9 mb/d. Global refining capacity will post even steeper growth, surging by 9.5 mb/d, led by China and the Middle East. European refiners will see no let-up from the squeeze caused by increasing U.S. product exports and the new Asian and Middle Eastern refining titans.

ON THE RIGHT TRACK

1417329_run_for_profit_concept_3

Such tectonic shifts in the energy supply & demand scenario could well impact the manufacturing sector. We are already witnessing  reshoring in the U.S., labor issues (manpower availability) in China (unthinkable a few years back) and the “charity begins at home” concept being obliquely drummed by many nations (to boost employment in their respective countries through domestic growth) with no overtone of jingoism.

Global trade could perhaps be affected initially, but is bound to pick up once the world economy gets back on track and growth clocks 5.5 % in 2-3 years.

Till the next post,

Cheers,

S. Sundaram

EmailSS@essjaycomposites.com

Twitter@essjaycomposite

Website: www.essjaycomposites.com

Lightweighting with Polymers & Composites – the Quest is Perennial

Hello all,

The report card on performance of nations and leading companies for Q1 2013 is out and has been the subject of review and intense debate throughout April.

HITS AND MISSES

1198394_world_map

China’s gross domestic product (GDP) came in at 7.7%, down from the previous quarter’s 7.9%. In March, industrial production increased 8.9%, just shy of the 10.1 % lift [China Spectator]. U.S. GDP increased at an annual rate of 2.5% from Q4 2012 and was just short of the expected 3.0% [Hot Air]. Singapore’s GDP contracted 1.4% over the previous quarter. U.K.’s GDP expanded 0.3% quarter-on-quarter driven by the services sector growth and bounce-back in North sea oil and gas output [Trading Economics]. The German economy stabilized in the first quarter after contracting in Q4 2012 [RTT News].

IN RECOVERY MODE ?

1204327_euros

A Reuters column last weekend stated that officials believe that the euro zone had turned the corner, sharpening the focus on longer-term reforms and structures……definitely news to cheer about from a global perspective. Which begs the question – has the euro zone hit the bottom of the U ?

After the “Jack-Rabbit” start to 2013, are we in for a spring swoon to the stock market ? Predictions are for a mitigated spring slide. There are several positives that may offset some of the negatives making for a potential decline that may be less steep than seen in recent years [Business Insider].

There was more news to cheer about last weekend. The Boeing 787 Dreamliner was back in the skies following a successful commercial flight on April 27.  Aerospace grade carbon fiber producers and CFRP processors, in particular, would be heaving a sigh of relief as the grounding had really nothing to do with composites, but was yet  holding back progress in a muted manner.

REV IT UP

1171150_background_with_arrows

Global assembly of light vehicles is forecast to reach 82.1 million units in 2013, representing a 4% year-on-year growth. North American assembly is forecast to reach 15.9 million units, representing a 3.6% increase from 2012, driven primarily by the U.S. automotive market. China is projected to achieve assembly of 18.9 million units – an impressive jump of 14% from 2012 [Plastics Today].

A highly reinforced polyamide 6 with 60% glass fiber loading renders metal superfluous in front end carriers for passenger cars. In addition to mounts for the headlamps, the front end carrier of the new Skoda Octavia also integrates injection-molded mounts for the radiator, hood lock, anti-theft system and air ducts. The composite product, with just one injection mold, eliminates the complicated handling and shaping of sheet metal; has significantly better mechanical properties, displays good flow, allows for very thin walls, topping off with a finely grained structure that fits well with the overall visual appearance [Plastics Today].

IN TOP GEAR

466305_subaru_impreza_1

Heavy steel leaf springs in automotive suspension systems may well make way for composites. Henkel has developed a RTM process for composite leaf springs using glass fiber and polyurethane (PU) resin. The GFRP leaf springs are reportedly 65% lighter than their steel counterpart. The PU resin cures significantly faster (than epoxy), penetrates and impregnates the glass fiber more easily due to its low viscosity, thereby enabling very short injection time. The exceptionally high stress intensity factor (which is a measure of toughness) of the PU resin has a positive effect on the fatigue behavior under load and, hence ideal for car leaf springs that are constantly subject to dynamic loading. Risks of local overheating and resulting shrinkage (in the RTM process) is reduced as the PU resin generates less heat overall during curing than epoxy resins. Hence, even thick components with several layers of fiber/fabric, cure fast [Plastics Today].

LONGER BLADES – MORE MW

wind mills (sept 29)

The quest for monster 100-meter wind turbine blades required to make offshore wind compete with fossil fuels continues. Wind turbines account for around 33% of the cost of offshore wind farms – installation costs are the major expense. Use of larger turbines reduces the number of wind turbines needed, thereby decreasing installation and maintenance costs. However, as turbines get bigger, the loads on the blades and hence their weight, goes up exponentially. Traditional blade manufacture involves forms as long as the blades. Blade Dynamics, partly owned by American Superconductor, has developed proprietary ways to make 12-20 meter sections of carbon fiber (CF) blades and then splicing them seamlessly, thereby eliminating the need for large forms [MIT Technology Review]. Though more expensive than glass fiber (GF) blades, CF blades are lighter. By making the blade in smaller sections, its possible to make more precise aerodynamic structures, thereby improving performance. It is also possible to put longer, lighter (CF) blades on existing wind turbine designs. Longer blades gather more wind, allowing the turbines to generate more power at lower wind speeds, increasing revenue in the process. Other advantages of lighter blades include feasibility to design new wind turbines that have lighter, less expensive components such as drive shaft, tower and foundation.

Carbon or glass fiber for longer blades and higher MW turbines for offshore ? The battle rages. As of now, CF has the definite edge.

NOVELTY NEVER WEARS OFF

529910_plane_windows

When it comes to lightweighting technologies, the aerospace sector is not far behind automotive. Polycarbonate (PC) and its co-polymers are enabling processors to produce parts with thinner walls that help reduce interior weight of an aircraft. Parts can be molded or extruded with very thin walls (down to 1.5 mm) while complying with leading flame, smoke and toxicity (FST) standards with halogen-free flame retardants to support sustainability [Plastics Today]. SABIC‘s new range of PC co-polymers have special features called the shear-thinning effect and are also said to meet tough commercial toxicity standards from Boeing and Airbus. The products flow slowly in low shear conditions (extrusion) and flow quickly in high-shear processes (injection molding).

 SHIFTING TRENDS

853262_trucks

If you thought that single piece thermosetting SMC was the prerogative of bumpers for trucks and heavy goods vehicles, here is  the not-so-surprising news….. future trend is for such bumpers to be manufactured on a modular basis from several components such as polyamide and polyester injection molded thermoplastic compounds. Headlamp supports would be from highly reinforced polyamide 6 with 60% glass fiber. The supports hold the headlamps and the light strips. They not only have to bear their weight (around 8.5 kgs per headlight), but must also withstand very high static and dynamic loads – hence must not fracture even under severe dynamic acceleration of up to 10 times the force of gravity. The U-shaped center front-step which is connected to the headlamp supports is injection molded from a PET+PBT blend reinforced with 20% glass fiber. The part is provided with numerous ribs and designed for a static load of 2kN as it has to bear the weight of the driver as he climbs on to the front to clean the wind screen. The thermoplastic blend has adequate flexural stiffness that renders steel reinforcement redundant [Plastics Today].

The technological advances in thermoplastics and blends thereof in the past decade have been phenomenal – especially in the automotive sector, where they were considered taboo for load-bearing applications not long ago.

THERMOPLASTICS FLYING HIGH

343548_sit_back_and_relax

Component integrity is critical to keeping aircraft in service to minimize maintenance and downtime. Brackets for use in aircraft structural applications have now been developed in carbon fiber reinforced polyether ether ketone (PEEK). The brackets weigh 45 grams each and used in primary and secondary structural applications in commercial and military aircraft. Besides a 70% weight saving compared to metals (stainless steel, aluminum and titanium), other benefits include faster part manufacturing cycle times (in minutes) compared to thermosets ( in hours). At current fuel prices, a 1 kg reduction in weight from a short-range aircraft can save airlines up to $ 100 in fuel costs. If composites brackets can remove 100 kgs of weight, an airline with 500 short-range aircraft could save up to $ 5 million annually by making the switch from traditional metal [Plastics Today]. Apart from a five-fold higher fatigue strength, added advantages over metal are vibration and noise dampening improvements.

FUTURE  SHOCK !

1327682_power_5

The shale boom in the U.S. has left the world’s largest economy awash in the power source which is used by utilities to generate nearly 25% of U.S. electricity [CNBC]. Utilities have traditionally used coal to generate electricity. But the abundance of relatively inexpensive natural gas has given power operators an incentive to shift away from coal. Energy markets continue to converge bringing the crude oil/natural gas ratio to 20:1 – the tightest ratio since January 2011. Even a year back, it was around 51:1 [Plastics Today]. Lyondell Basell’s recent announcement of expansion plans for 1.2 billion pounds of new PE capacity in North America has made it the sixth PE maker to announce plans for new PE capacity  joining Chevron, Nova, Formosa, Dow and Exxon Mobil – such has been the impact of the availability of abundant natural gas from shale deposits in the U.S. The cumulative increase in new PE capacity by the six companies is greater than 6 billion pounds [Plastics News].

Little wonder that PE is experiencing a surge in growth and rivaling PP in several applications.

An insert molding process employing a co-polyamide adhesion promoter to bond aluminum tubing  with glass fiber reinforced polyamide 6 is being used by Mercedes Benz in several of its vehicles to derive weight savings [Plastics Today]. The aluminum tubing connects both A-pillars together and supports the entire dashboard – from the steering wheel to the glove compartment. The co-polyamide adhesion promoter covers the aluminum tubing and joins the composite holding brackets of the individual components to the tubing by an injection molding process based on melt-bonding. Component weight is drastically reduced by 20% compared to traditional joining methods such as welding/screwing together with metal connecting plates.

 SWAP – GLASS TO POLYCARBONATE

60461_car_4

This one for the road…. Volkswagen is debuting a two-component injection molded, plasma coated polycarbonate side windows that provides a 33% weight saving over traditional glass windows as well as scratch resistance. The glazing provides the same visual characteristics as standard glass windows [Plastics News].

Per Bloomberg New Energy Finance, global investment in clean energy in Q1 2013 was lower than at any other quarter since 2009. From Q4 2012, global investment in clean energy plummeted 38%. In the U.S., Q1 2013 has seen a 54% drop (possibly due to late announcement of the PTC extension); Europe a 25% drop and China 15% [Oil and Energy Insider].

The grapevine on ending fuel subsidies to level the playing field could be one of the reasons. A wait and watch approach is perhaps the best recourse to green energy crusaders.

INVESTMENT PLANS

126043_business_3

A cursory reading of this post would obviously show the emphasis on automotive, aerospace and wind energy sectors and not without reason. Currently, these market segments are the  principal growth drivers for composites almost globally, with other sectors also pitching in a measured way depending on the region. The Middle East had airline traffic gain of 15.6% year-over-year, Latin America had traffic gain of 11.8%, Asia Pacific 5.4%, Europe 3.7% and North America 2.4% – an overall growth reflecting business confidence [Forbes]. The fact that China’s growth is poised to be driven by domestic demand (rather than exports) is a welcome change and augurs well for the industry. The U.S. automotive sector appears to be on a roll with CFRP being a game changer, though the last minute renewal of the PTC for wind energy could slow down the sector in the first half, after a record 2012 performance (in terms of GW installed). Advantageous energy costs (natural gas and electricity futures) should be beneficial to glass & carbon fiber expansion plans and/or greenfield plants that are on the anvil.

2013 could well serve as the (re) launch pad for the composites industry in North America to take off yet again (after a tepid 2012) resulting in greater gains from 2014 & aided by continued focus on material substitution.The time to reap the benefits of attractive energy costs is NOW !

Tailpiece : Global consumer confidence rose in Q1 2013 – confidence improved in 60% markets globally compared to only 33% in Q4 2012, with marked increase in sentiment in the U.S., Japan and Northern Europe [Trade Arabia].

While this may invoke a smile in many, the Cassandras would probably still sulk.

Till the next post,

Cheers,

S. Sundaram

EmailSS@essjaycomposites.com

Twitter@essjaycomposite

Website: www.essjaycomposites.com