Monthly Archives: January 2012

Game-changing Market Trends…..Catalyzed by Materials Science Advances

Hello again and welcome to another post,

At the outset, I wish readers A Happy & Prosperous 2012 !


As we usher in the New Year with cautious optimism (bordering on trepidation, for some ?) of the global economy, it would perhaps be prudent to focus on each Quarter at a time. December 2011 was a mixed bag of sorts with the major surprise being the possible renaissance of the U.S. economy through a slight jump in manufacturing activity and hence predictions of a relatively strong Q1. Asian factory output remained sluggish in December with China, Korea, Taiwan registering weak industrial activity. Economic pundits state that the eurozone is already in a recession that could extend through Q2,2012.

2012 could well be termed the year of M&A (Mergers & Acquisitions) as industries across a broad spectrum could  witness consolidation. We have already seen the beginning of this trend from Q3, 2011 in the plastics and composites sector which could gather further momentum in the coming months. Capacity expansion through organic growth would still continue; albeit at a relatively slower pace, from a M&A perspective.


“Faster than a speeding bullet” was the screaming Dec 27 headline [Mail Online] heralding China’s super-speed train scorching speeds up to 300mph (100mph quicker than its current bullet train), reportedly made possible by liberal use of lightweight CFRP. The spate of  announcements related to the carbon fiber industry…be it related to new JVs for the  fiber or downstream units by auto majors jointly with carbon fiber producers adds credence to the growing demand for CF in automotive, aerospace and infrastructure (offshore wind energy, CNG tanks….). Weight reduction is of paramount importance and carbon fiber could well emerge as the material of choice this decade for high-end applications where premium is on performance (superior mechanical properties vis-a-vis glass fiber).


The forecast for the automotive sector this year is that electric vehicles (includes hybrids) will be more widely available than ever. It is also predicted that this could be the year where mass market vehicles adopt CFRP parts [Plastics Today]. We heard the news at IAA 2011 on the development and successful commercialization of a 33% GF reinforced polyamide 66 lithium ion battery module frame for GM‘s hybrid extended range electric drive cars [European Plastics News]. The composite frames support and align the battery cells. Replacement of metal battery housings by plastics is the new trend. The low thermal conductivity of plastics eliminates the foam sheet sheet thermal insulation required for metal housings. Connectors integrated in the housing provide a thermal barrier, protecting batteries from overheating while charging and against cold temperatures in the winter.

As we all realize, plastics & composites in automotive is not just about weight reduction alone…..

The concept of failure strain (elongation at break) in design of composites is well known, as also the role of the matrix in achieving this objective. Studies on hybrid composites with interplied carbon fiber reinforced polypropylene (CFRPP) between self-reinforced polypropylene (SRPP) layers have shown that the failure strain of the hybrid composite is improved in comparison with CFRPP. One of the contributing factors to improved tensile strength has been to utilize the intrinsic behavior of shrinkage under high temperatures of SRPP, to introduce a compressive pre-strain in CFRPP [Sciencia].


Relentless pursuit of technological advances continue to expand the range of applications for composites. Recent studies indicate that Polyamide 6 composites reinforced with surface-treated glass fibers and including a small amount of clay-like mineral as an inexpensive filler could yield the best performance of injection molded parts because the glass fibers enhance the mechanical properties and the clay-like filler accelerates the crystallization rate. The presence of a small amount of nucleating agent favors the isothermal crystallization rate of the reinforced polyamide. Microstructural features of the composites and interfacial interactions between filler and polyamide phases, quantified by rheological measurements served to substantiate the findings [Sciencia].


Driven by surging natural gas consumption in Asia and the U.S.( primarily due to shale gas), global use has rebounded to new highs. The world’s largest incremental increase  occurred in the U.S. where low prices (an all-time low as we speak) triggered a 1.3 trillion cubic feet increase to 24.1 trillion cubic feet – just over 1/5th of global natural gas consumption [Environmental News Network]. The Asia Pacific region experienced the strongest growth with China, India, South Korea, Taiwan experiencing demand growth of over 20 % (over 2009 levels). Sinopec’s increased stake in a U.S. energy company last week with a view to gain technology through partnerships is a recognition of China’s focus on shale gas reserves that exceed that of the U.S. Taking cognizance of this rapid shift in natural gas economics, several leading petrochemical majors have announced new plants for ethylene and industries are planning to boost fertilizer production made from gas.

The fallout…PP demand through 2015 in North America is expected to grow at less than GDP growth. Interesting  2011 stats… PP sales declined by 6.8%, while HDPE and PS grew 2.7% and 11% respectively [Plastics Engineering]. With the current natural gas pricing advantage (ethane cracking yields more ethylene !); this trend is definitely likely to continue into the foreseeable future….unless crude oil price drops dramatically!

The resin market in North America is predicted to sport a healthy look this year with distributors eyeing higher sales volumes. PE is expected to make greater inroads through technological innovations and advances in resin properties, possibly displacing PP in the process in many applications. Will LFRT applications using PP take a hit ? Only time will tell.

Significant changing market dynamics ? You bet.  


Ever considered combination of metals to result in a material with the strength of aluminum, density of steel and greater than 1.5 times the energy of TNT…. that is the new innovative revolutionary material that increases the explosive force and lethality on enemy targets. With the HDRM acronym (High Density Reactive Material); this material is designed to replace steel in warhead casings with little or no compromise in strength or design [Materials Insight].  

Innovations are not confined to lightweight plastics and composites, but the heavier stuff as well…which is required at times, necessitated by the nature of the application !

Brace yourselves for another innovative material….that matches the malleability of glass while retaining the toughness and stability of thermoset plastics. With potential applications in the aerospace and auto sectors; the material is recyclable while scratches and small breaks can be repaired by heating [Plastics News]. This unique organic material that mimics malleability of inorganic glass is being taken up for commercial production in France.

Are venture capitalists listening ?

The Word Future Energy Summit [WFES] convenes in Abu Dhabi in the Middle East later this month with a lot of discussion on renewable energy (in its various forms) in general. It would be interesting to note the valedictory comments at the conclusion of the Summit and the message that it conveys.


I end this post with people referring to the Mayan calendar’s prophecy of the world ending in 2012. The Cassandras may be pitching for it; but much will depend on policymakers’ (politicians’) response. As a noted economist recently pointed out that “politicians should get out in front…right now they are running behind”.

Apocalypse and end of the world….Bah !

Till the next post,


S. Sundaram